精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=cosx•sin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$,x∈R.
(1)求f(x)的最小正周期;
(2)当方程f(x)-4a=0在闭区间[-$\frac{π}{4}$,$\frac{π}{4}$]上有两个不同的根时,求实数a的取值范围.

分析 (1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性求得f(x)的最小正周期.
(2)由题意,函数f(x)的图象和直线y=4a在闭区间[-$\frac{π}{4}$,$\frac{π}{4}$]上有两个不同的交点,由于f(x)在[-$\frac{π}{4}$,-$\frac{π}{12}$]上是减函数,在[-$\frac{π}{12}$,$\frac{π}{4}$]上是增函数,而f(-$\frac{π}{4}$)=-$\frac{1}{4}$,f(-$\frac{π}{12}$)=-$\frac{1}{2}$,f($\frac{π}{4}$)=$\frac{1}{4}$,可得4a>-$\frac{1}{2}$,且4a≤-$\frac{1}{4}$,求得a的范围.

解答 解:(1)由已知函数f(x)=cosx•sin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$=cosx($\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$
=$\frac{1}{2}$sinxcosx-$\frac{\sqrt{3}}{2}$•$\frac{1+cos2x}{2}$+$\frac{\sqrt{3}}{4}$=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{4}$cos2x=$\frac{1}{2}$sin(2x-$\frac{π}{3}$),
故函数的最小正周期为$\frac{2π}{2}$=π.
(2)当方程f(x)-4a=0在闭区间[-$\frac{π}{4}$,$\frac{π}{4}$]上有两个不同的根时,
等价于函数f(x)的图象和直线y=4a在闭区间[-$\frac{π}{4}$,$\frac{π}{4}$]上有两个不同的交点,
由于f(x)在[-$\frac{π}{4}$,-$\frac{π}{12}$]上是减函数,在[-$\frac{π}{12}$,$\frac{π}{4}$]上是增函数,而f(-$\frac{π}{4}$)=-$\frac{1}{4}$,f(-$\frac{π}{12}$)=-$\frac{1}{2}$,f($\frac{π}{4}$)=$\frac{1}{4}$,
故4a>-$\frac{1}{2}$,且4a≤-$\frac{1}{4}$,求得-$\frac{1}{8}$<a≤-$\frac{1}{16}$.

点评 本题主要考查三角恒等变换,正弦函数的周期性、单调性,方程根的存在性以及个数判断,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.向量$\overrightarrow{a}$=(3,-2),$\overrightarrow{b}$=(-x,y-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,若x,y为正数,则$\frac{2}{3x}$+$\frac{4}{y}$的最小值是(  )
A.$\frac{5}{3}$B.$\frac{8}{3}$C.9D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知定义在R上的函数$f(x)=\frac{{b-{2^x}}}{{{2^x}+a}}$是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)设g(x)=f(x)+1,h(x)=lnx
①判断g(x)的单调性并说明理由;
②若g(s)=h(t),求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数f(x)=-x2+2x+3,x∈[0,3]的最大值和最小值分别是M,m,则M+m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若圆心在x轴上,半径为$\sqrt{5}$的圆C位于y轴左侧,且被直线x+2y=0截得的弦长为4,则圆C的方程是(  )
A.${(x-\sqrt{5})^2}+{y^2}=5$B.${(x+\sqrt{5})^2}+{y^2}=5$C.(x-5)2+y2=5D.(x+5)2+y2=5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设点A(x1,y1),B(x2,y2)是椭圆$\frac{{x}^{2}}{4}$+y2=1上两点,若过点A,B且斜率分别为-$\frac{{x}_{1}}{4{y}_{1}}$,-$\frac{{x}_{2}}{4{y}_{2}}$的两直线交于点P,且直线OA与直线OB的斜率之积为-$\frac{1}{4}$,E($\sqrt{6}$,0),则|PE|的最小值为2$\sqrt{2}$-$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在空间四边形ABCD中,AC,BD为其对角线,E,F,G,H分别为AC,BC,BD,AD上的点,若四边形EFGH为平行四边形,求证:AB∥平面EFGH.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.存在实数x使得不等式|x+3|+|x-1|≤22a-3•2a成立,则实数a的取值范围为(  )
A.(-∞,-1]∪[4,+∞)B.[2,+∞)C.[1,2]D.(-∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求函数f(x)=2sin3x+3|sin4x|的最小正周期.

查看答案和解析>>

同步练习册答案