精英家教网 > 高中数学 > 题目详情
5.已知向量$\overrightarrow{a}$=(sinx,-1),$\overrightarrow{b}$=($\sqrt{3}$cosx,-$\frac{1}{2}$),函数f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$-2.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=$\sqrt{3}$,c=1,且f(A)=1,求△ABC的面积S.

分析 (1)根据平面向量的数量积,利用三角恒等变换化简f(x),再求出f(x)的最小正周期和单调递减区间;
(2)根据f(A)=1求出A的值,再由正弦定理求出C的值,得出△ABC为Rt△,从而求出△ABC的面积.

解答 解:(1)向量$\overrightarrow{a}$=(sinx,-1),$\overrightarrow{b}$=($\sqrt{3}$cosx,-$\frac{1}{2}$),
所以函数f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$-2
=sinx(sinx+$\sqrt{3}$cosx)+(-1)×(-$\frac{3}{2}$)-2
=sin2x+$\sqrt{3}$sinxcosx-$\frac{1}{2}$
=$\frac{1-cos2x}{2}$+$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x
=sin(2x-$\frac{π}{6}$);
所以函数f(x)的最小正周期为T=π,
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,
解得kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,k∈Z,
所以f(x)的单调递减区间是[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z;
(2)△ABC中,A为锐角,a=$\sqrt{3}$,c=1,
且f(A)=sin(2A-$\frac{π}{6}$)=1,
即2A-$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z,
∴A=kπ+$\frac{π}{3}$,k∈Z,
即A=$\frac{π}{3}$;
由正弦定理$\frac{a}{sinA}$=$\frac{c}{sinC}$,
解得sinC=$\frac{1}{2}$,
又a>c,∴C=$\frac{π}{6}$,B=$\frac{π}{2}$,
∴△ABC为Rt△,
∴△ABC的面积为S=$\frac{1}{2}$ac=$\frac{1}{2}$×$\sqrt{3}$×1=$\frac{\sqrt{3}}{2}$.

点评 本题考查了三角恒等变换与三角函数的图象和性质以及正弦定理,三角形面积公式的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知某牌子汽车生产成本C(万元)与月产量x(台)的函数关系式为C=100+4x,单价p与产量x的函数关系式为p=25-$\frac{1}{8}x$,假设产品能全部售出.
(1)求利润函数f(x)的解析式,并写出定义域;
(2)当月产量x为何值时,利润最大,并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面进位制之间转化错误的是(  )
A.31(4)=62(2)B.101(2)=5(10)C.119(10)=315(6)D.27(8)=212(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号第一组第二组第三组第四组第五组
分组[50,60)[60,70)[70,80)[80,90)[90,100]
(Ⅰ)求图中a的值;
(Ⅱ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,若将该样本看成一个总体,从中随机抽取2名学生,求其中恰有1人的分数不低于90分的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图:Rt△ABC中,∠CAB=90°,AB=2,AC=$\frac{\sqrt{2}}{2}$,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.
(1)建立适当的坐标系,求曲线E的标准方程;
(2)过B点且倾斜角为120°的直线l交曲线E于M,N两点,求|MN|的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某几何体的三视图如图所示,则该几何体的体积为$\frac{{9\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.三个互不重合的平面,最多能把空间分成n部分,n的值是(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x-a|+|x+b|(a>0,b>0).
(Ⅰ)若a=1,b=2,解不等式f(x)≤5;
(Ⅱ)若f(x)的最小值为3,求$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{a}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$\frac{2sin20°tan70°-2sin40°}{sin35°}$=$\sqrt{6}-\sqrt{2}$.

查看答案和解析>>

同步练习册答案