精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论函数的单调性;

2)若函数处取得极值,不等式恒成立,求实数的取值范围;

3)当时,证明不等式.

【答案】1)当时函数上单调递减; 时函数在上单调递减,在上单调递增;2;3)详见解析

【解析】

试题(1)先求导,讨论导数的正负,导数正得增区间,导数负得减区间.在解不等式的过程中注意讨论的符号.(2)由(1)知函数的极值点是,.可将转化为,,求导,讨论导数的符号,判断函数的单调性,从而求其最小值.则应小于等于函数的最小值.(3)因为,.则证明.构造函数,证此函数在上单调递增即可.即证在即可.

试题解析:(1)解

时,,从而

函数上单调递减;

时,若,则,从而

,则,从而

函数在上单调递减,在上单调递增.

2)解 根据(1)函数的极值点是,若,则

所以,即

由于,即

,则

可知为函数内唯一的极小值点,也是最小值点,故

所以的最小值是

故只要即可,

的取值范围是

3)证明不等式

构造函数

可知函数在

即函数上单调递增,由于

所以,所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是关于的方程的两个不相等的实数根,那么过两点的直线与圆的位置关系是(

A.相离B.相切C.相交D.随的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等轴双曲线的两个焦点在直线上,线段的中点是坐标原点,且双曲线经过点

(1)若已知下列所给的三个方程中有一个是等轴双曲线的方程:①;②;③.请推理判断哪个是等轴双曲线的方程,并求出此双曲线的实轴长;

(2)现要在等轴双曲线上选一处建一座码头,向两地转运货物.经测算,从、从修建公路的费用都是每单位长度万元,则码头应建在何处,才能使修建两条公路的总费用最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为正方形,.

(1)证明:平面平面.

(2)若平面,二面角,三棱锥的外接球的球心为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解声音强度(单位:分贝)与声音能量(单位:)之间的关系,将测量得到的声音强度和声音能量,2,…,10)数据作了初步处理,得到如图散点图及一些统计量的值.

表中

(1)根据散点图判断,哪一个适宜作为声音强度关于声音能量的回归方程类型?(给出判断即可,不必说明理由)

(2)根据表中数据,求声音强度关于声音能量的回归方程;

(3)当声音强度大于60分贝时属于噪音,会产生噪音污染,城市中某点共受到两个声源的影响,这两个声源的声音能量分别是,且.已知点的声音能量等于声音能量之和.请根据(1)中的回归方程,判断点是否受到噪音污染的干扰,并说明理由.

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,抛物线的准线被椭圆截得的线段长为

(1)求椭圆的方程;

(2)如图,点分别是椭圆的左顶点、左焦点直线与椭圆交于不同的两点都在轴上方).且.证明:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:

则下列结论正确的是  

A. 与2015年相比,2018年一本达线人数减少

B. 与2015年相比,2018年二本达线人数增加了

C. 2015年与2018年艺体达线人数相同

D. 与2015年相比,2018年不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,圆经过椭圆的两个焦点和两个顶点,点在椭圆上,且.

(Ⅰ)求椭圆的方程和点的坐标;

(Ⅱ)过点的直线与圆相交于两点,过点垂直的直线与椭圆相交于另一点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, , ,点为棱的中点.

(1)证明: 平面

(2)若,求三棱锥的体积.

查看答案和解析>>

同步练习册答案