【题目】在正方体ABCDA1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线( )
A.不存在B.有且只有两条C.有且只有三条D.有无数条
科目:高中数学 来源: 题型:
【题目】已知分别为的三内角A,B,C的对边,其面积,在等差数列中,,公差.数列的前n项和为,且.
(1)求数列的通项公式;
(2)若,求数列的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(Ⅰ)求曲线的直角坐标方程,并指出其表示何种曲线;(Ⅱ)设直线与曲线交于两点,若点的直角坐标为,试求当时,的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如,在不超过13的素数中,随机选取两个不同的数,其和为偶数的概率是________(用分数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知矩形,,,将沿对角线进行翻折,得到三棱锥,则在翻折的过程中,有下列结论:
①三棱锥的体积最大值为;
②三棱锥的外接球体积不变;
③三棱锥的体积最大值时,二面角的大小是;
④异面直线与所成角的最大值为.
其中正确的是( )
A.①②④B.②③C.②④D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:
①3小时以内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值单位:与游玩时间小时)满足关系式:;
②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为即累积经验值不变);
③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.
⑴当时,写出累积经验值E与游玩时间t的函数关系式,并求出游玩6小时的累积经验值;
⑵该游戏厂商把累积经验值E与游玩时间t的比值称为“玩家愉悦指数”,记作;若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线,双曲线的左、右焦点分别为F1,F2,M是双曲线C2的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若,且双曲线C1,C2的离心率相同,则双曲线C2的实轴长是 ( )
A. 32 B. 4 C. 8 D. 16
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数对定义城内的每一个值,在其定义域内都存在唯一的,使得成立,则称该函数为“函数”.
(1)判断函数是否为“函数”,并说明理由;
(2)若函数在定义域上为“函数”,求的取值范围;
(3)已知函数在定义域上为“函数”.若存在实数,使得对任意的,不等式都成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com