精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=x|2a-x|+2x,a∈R.
(1)若a=0,判断函数y=f(x)的奇偶性,并加以证明;
(2)若函数f(x)在R上是增函数,求实数a的取值范围;
(3)若存在实数a∈[-2,2],使得关于x的方程f(x)-tf(2a)=0有三个不相等的实数根,求实数t的取值范围.

分析 (1)若a=0,根据函数奇偶性的定义即可判断函数y=f(x)的奇偶性;
(2)根据函数单调性的定义和性质,利用二次函数的性质即可求实数a的取值范围;
(3)根据方程有三个不同的实数根,建立条件关系即可得到结论.

解答 解:(1)函数y=f(x)为奇函数.
理由:当a=0时,f(x)=x|x|+2x,
f(-x)=-x|x|-2x=-f(x),
∴函数y=f(x)为奇函数;
(2)f(x)=$\left\{\begin{array}{l}{{x}^{2}+(2-2a)x,x≥2a}\\{-{x}^{2}+(2+2a)x,x<2a}\end{array}\right.$,
当x≥2a时,f(x)的对称轴为:x=a-1;
当x<2a时,y=f(x)的对称轴为:x=a+1;
∴当a-1≤2a≤a+1时,f(x)在R上是增函数,
即-1≤a≤1时,函数f(x)在R上是增函数;      
(3)方程f(x)-tf(2a)=0的解即为方程f(x)=tf(2a)的解.
①当-1≤a≤1时,函数f(x)在R上是增函数,
∴关于x的方程f(x)=tf(2a)不可能有三个不相等的实数根;                          
②当a>1时,即2a>a+1>a-1,
∴f(x)在(-∞,a+1)上单调增,
在(a+1,2a)上单调减,在(2a,+∞)上单调增,
∴当f(2a)<tf(2a)<f(a+1)时,
关于x的方程f(x)=tf(2a)有三个不相等的实数根;
即4a<t•4a<(a+1)2
∵a>1,
∴1<t<$\frac{1}{4}$(a+$\frac{1}{a}$+2).
设h(a)=$\frac{1}{4}$(a+$\frac{1}{a}$+2),
∵存在a∈[-2,2],
使得关于x的方程f(x)=tf(2a)有三个不相等的实数根,
∴1<t<h(a)max
又可证h(a)=$\frac{1}{4}$(a+$\frac{1}{a}$+2)在(1,2]上单调增,
∴<h(a)max=$\frac{9}{8}$,
∴1<t<$\frac{9}{8}$,
③当a<-1时,即2a<a-1<a+1,
∴f(x)在(-∞,2a)上单调增,
在(2a,a-1)上单调减,在(a-1,+∞)上单调增,
∴当f(a-1)<tf(2a)<f(2a)时,
关于x的方程f(x)=tf(2a)有三个不相等的实数根;
即-(a-1)2<t•4a<4a,
∵a<-1,
∴1<t<-$\frac{1}{4}$(a+$\frac{1}{a}$-2),
设g(a)=-$\frac{1}{4}$(a+$\frac{1}{a}$-2),
∵存在a∈[-2,2],使得关于x的方程f(x)=tf(2a)有三个不相等的实数根,
∴1<t<g(a)max
又可证g(a)=-$\frac{1}{4}$(a+$\frac{1}{a}$-2)在[-2,-1)上单调减,
∴g(a)max=$\frac{9}{8}$,
∴1<t<$\frac{9}{8}$;                                   
综上:1<t<$\frac{9}{8}$.

点评 本题主要考查函数奇偶性的判断,以及函数单调性的应用,综合考查分段函数的应用,综合性较强,运算量较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知命题p:?x∈[0,3],a≥2x-2,命题q:?x∈R,x2+4x+a=0,若命题“p∧q”是真命题,则实数a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.写出集合{(1,2),(3,4)}的真子集:∅,{(1,2)},{(3,4)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)如果${3^{-5x}}>{({\frac{1}{3}})^{x+6}}$,求x的取值范围?
(2)如果loga(2x)>loga(-x+9),求x的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.求函数f(x)=x3-3x+3在区间[-2,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.
(Ⅰ)求证:平面BDGH∥平面AEF;
(Ⅱ)求二面角H-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在数列{an}中,a1=1,a2=3,且an+1=(p+q)an-pqan-1(n≥2,q≠0).
(Ⅰ)若p=2,设bn=an+1-2an(n∈N*),证明:{bn}是等比数列;
(Ⅱ)对任意的n∈N*,设cn=an+1-qan,证明:“数列{cn}为常数列”的充要条件是“p=1”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|3<x<7},B={x|m<x<8},m∈R.
(1)当m=1时,求A∩B
(2)若A⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定义函数f(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{-1,x∉Q}\end{array}\right.$,则f(f(2016+π))=1.

查看答案和解析>>

同步练习册答案