精英家教网 > 高中数学 > 题目详情
观察以下等式:
C51+C35=23-2,C91+C95+C99=27+23
C131+C135+C139+C1311=211-25
C171+C175+C179+1713+C1717=215+27
由此推测:C20131+C20135+C2013+…+C20132013=
 
考点:归纳推理
专题:推理和证明
分析:通过观察归纳出:第n个等式的右边由二项构成,第一项为:24n-1,第二项为(-1)n•22n-1,进而根据4n+1=2013,n=503,得到答案.
解答: 解:由已知中等式:
C51+C35=23-2,C91+C95+C99=27+23
C131+C135+C139+C1311=211-25
C171+C175+C179+1713+C1717=215+27
由此推测:第n个等式的右边由二项构成,第一项为:24n-1,第二项为(-1)n•22n-1
由4n+1=2013,n=503,可得4n-1=2011,2n-1=1005
C20131+C20135+C2013+…+C20132013=22011-21005
故答案为:22011-21005
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正项等比数列{an}中,a1=2,且a2,a1+a2,a3成等差数列.
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ) 设bn=(1-
2
an
)2+a(1+
1
an
)
(n∈N*),若a∈[0,2],求数列{bn}的最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,程序框图(算法流程图)的输出结果
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设D为不等式组
x+y≤1
2x-y≥-1
x-2y≤1
表示的平面区域,点B(a,b)为坐标平面xOy内一点,若对于区域D内的任一点A(x,y),都有
OA
OB
≤1
成立,则a+b的最大值等于(  )
A、2B、1C、0D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
9
+
y2
16
=1上一点P到两焦点距离的乘积为m,当m取得最大值时,点P的坐标是(  )
A、(3,0)和(-3,0)
B、(0,3)和(0,-3)
C、(4,0)和(-4,0)
D、(0,4)和(0,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂接到一标识制作订单,标识如图所示,分为两部分,“T型”部分为宽为10cm 的两个矩形相接而成,圆面部分的圆周是A,C,D,F的外接圆.要求如下:①“T型”部分的面积不得小于800cm2;②两矩形的长均大于外接圆半径.为了节约成本,设计时应尽量减小圆面的面积.此工厂的设计师,凭直觉认为当“T型”部分的面积取800cm2且两矩形的长相等时,成本是最低的.你同意他的观点吗?试通过计算,说说你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,sinα),
b
=(-
1
2
3
2
),其中α是锐角.
(Ⅰ)当α=30°时,求|
a
+
b
|;
(Ⅱ)证明:向量
a
+
b
a
-
b
垂直;
(Ⅲ)若向量
a
b
夹角为60°,求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,求直线ρsin(θ+
π
4
)=2被圆ρ=4截得的弦长.

查看答案和解析>>

同步练习册答案