精英家教网 > 高中数学 > 题目详情
20.$\lim_{n→∞}[{\frac{1}{3}+\frac{1}{8}+…+\frac{1}{{n({n+2})}}}]$=$\frac{3}{4}$.

分析 利用裂项求和,再求极限,可得结论.

解答 解:$\lim_{n→∞}[{\frac{1}{3}+\frac{1}{8}+…+\frac{1}{{n({n+2})}}}]$=$\underset{lim}{n→∞}$$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)=$\frac{1}{2}×(1+\frac{1}{2})$=$\frac{3}{4}$,
故答案为$\frac{3}{4}$.

点评 本题考查裂项求和,考查极限知识,正确求和是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则点P的轨迹方程是(  )
A.(x-1)2+y2=2B.(x-1)2+y2=4C.y2=2xD.y2=-2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数$f(x)=\left\{\begin{array}{l}{log}_{\frac{1}{2}}^{(-x)},x<0\\{log}_{2}^{x},x>0\end{array}\right.$,若f(a)>f(-a),则a的范围为(  )
A.(-1,0)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求证:“若m>0,则方程x2+x-m=0有实根”为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow a$,$\overrightarrow b$满足条件:$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=\sqrt{2}$,且$\overrightarrow a$与$2\overrightarrow b-\overrightarrow a$互相垂直,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某生产旅游纪念品的工厂,拟在2017年度进行系列促销活动.经市场调查和测算,该纪念品的年销售量x(单位:万件)与年促销费用t(单位:万元)之间满足3-x与t+1成反比例(若不搞促销活动,纪念品的年销售量只有1万件);已知工厂2017年生产纪念品的固定投资为3万元,每生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为“年平均每件生产成本的1.5倍”与“年平均每件所占促销费的一半”之和时,则当年的产量和销量相等.(利润=收入-生产成本-促销费用);
(1)请把该工厂2017年的年利润y(单位:万元)表示成促销费t(单位:万元)的函数;
(2)试问:当2017的促销费投入多少万元时,该工厂的年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设α,β是两个不同的平面,m,n是两条不同的直线,给出下列四个论断①m∥n;②α∥β③m⊥α;④n⊥β.以其中三个论断作为条件,余下一个论断作为结论,则一共可以写出真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)求函数y=x(a-2x)(x>0,a为大于2x的常数)的最大值;
(2)已知a>0,b>0,c>0,a2+b2+c2=4,求ab+bc+ac的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数在(0,+∞)上是增函数的是(  )
A.y=3-xB.y=-2xC.y=log0.1xD.y=x${\;}^{\frac{1}{2}}$

查看答案和解析>>

同步练习册答案