£¨2011•½úÖÐÈýÄ££©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³ÌÑ¡½²
ÔÚÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßc1µÄ²ÎÊý·½³ÌΪ£º
x=2cos¦È
y=2sin¦È
£¨¦ÈΪ²ÎÊý£©£¬°ÑÇúÏßc1ÉÏËùÓеãµÄ×Ý×ø±êѹËõΪԭÀ´µÄÒ»°ëµÃµ½ÇúÏßc2£¬ÒÔOΪ¼«µã£¬xÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ
2
¦Ñcos(¦È-
¦Ð
4
)=4
£®
£¨1£©ÇóÇúÏßc2µÄÆÕͨ·½³Ì£¬²¢Ö¸Ã÷ÇúÏßÀàÐÍ£»
£¨2£©¹ý£¨1£¬0£©µãÓël´¹Ö±µÄÖ±Ïßl1ÓëÇúÏßc2ÏཻÓëA¡¢BÁ½µã£¬ÇóÏÒABµÄ³¤£®
·ÖÎö£º£¨1£©ÓÉ
x=2cos¦È
y=2sin¦È
£¨¦ÈΪ²ÎÊý£©£¬µÃµ½ÇúÏßc1µÄ²ÎÊý·½³ÌΪ£º
x=2cos¦È
y=sin¦È
£¨¦ÈΪ²ÎÊý£©£®ÔÙcos¦È=
x
2
£¬sin¦È= y
ÀûÓÃÈý½Çº¯ÊýµÄÐÔÖÊÄܹ»µÃµ½ÇúÏßc1µÄÆÕͨ·½³Ì£¬ÓÉ´ËÄÜÇó³öÇúÏßc2¼°ÆäÇúÏßÀàÐÍ£®
£¨2£©Ö±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y=4£¬Ö±Ïßl1µÄÖ±½Ç×ø±ê·½³ÌΪx-y=1£®ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©ÓÉ
x-y=1
x2
4
+y2=1
µÃ3x2-8x=0£¬ÓÉ´ËÄÜÇó³öÏÒABµÄ³¤£®
½â´ð£º½â£º£¨1£©ÓÉÌâÇúÏßc1µÄ²ÎÊý·½³ÌΪ£º
x=2cos¦È
y=sin¦È
£¨¦ÈΪ²ÎÊý£©¡­£¨2·Ö£©
¡àÇúÏßc1µÄÆÕͨ·½³ÌΪ
x2
4
+y2=1
£¬
¡ßÇúÏßc1ÉÏËùÓеãµÄ×Ý×ø±êѹËõΪԭÀ´µÄÒ»°ëµÃµ½ÇúÏßc2£¬
¡àÇúÏßc2£º
x2
4
+4y2
=1£¬±íʾÒÔÔ­µãΪÖÐÐÄ£¬½¹µãÔÚxÖáÉÏ£¬³¤Ö᳤Ϊ4£¬¶ÌÖ᳤Ϊ
1
2
µÄÍÖÔ²£®¡­£¨5·Ö£©
£¨2£©¡ßÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ
2
¦Ñcos(¦È-
¦Ð
4
)=4
£¬
¼´£º¦Ñcos¦È+¦Ñsin¦È=4
Áîx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬
¡àÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y=4¡­£¨7·Ö£©
¡àÖ±Ïßl1µÄÖ±½Ç×ø±ê·½³ÌΪx-y=1£¬
ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©
ÓÉ
x-y=1
x2
4
+y2=1
£¬
µÃ3x2-8x=0
¡àx1+x2=
8
3
£¬x1x2=0

¡à|AB|=
1+1
64
3
=
8
3
2
¡­£¨10·Ö£©
µãÆÀ£º±¾Ì⿼²é¼òµ¥ÇúÏߵļ«×ø±ê·½³Ì¼°ÆäÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬ÕýÈ·µØ°ÑÇúÏߵļ«×ø±ê·½³Ìת»¯ÎªÆÕͨ·½³Ì£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•½úÖÐÈýÄ££©ÓйØÃüÌâµÄ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•½úÖÐÈýÄ££©ÒÑ֪ʵÊýx£¬yÂú×ã
x+3y-3¡Ü0
x-y+1¡Ý0  
y¡Ý-1
£¬Ôòz=2x+yµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•½úÖÐÈýÄ££©Ò»¸öÌå»ýΪ16
3
µÄÕýÈýÀâÖùµÄÈýÊÓͼÈçͼËùʾ£¬ÔòÕâ¸öÈýÀâÖùµÄ×óÊÓͼµÄÃæ»ýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•½úÖÐÈýÄ££©¶¨ÒåÔÚRÉϵÄżº¯Êýf£¨x£©Âú×ãf£¨x+1£©=
1
f(x)
£¬µ±x¡Ê[-3£¬-2]ʱ£¬f(x)=3x
£¬Éèa=f£¨
3
2
£©£¬b=f£¨
5
£©£¬c=f£¨2
2
£©£¬Ôòa£¬b£¬cµÄ´óС¹ØϵÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•½úÖÐÈýÄ££©ÊýÁÐ{xn}Âú×ãxn+1=xn+xn+2£¬ÒÑÖªx1=a£¬x2=b£¬Ôòx2011µÄֵΪ
a
a
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸