精英家教网 > 高中数学 > 题目详情
已知,且,则的最大值为       .
-21

试题分析:因为,所以
,又,所以的最大值为-21.
点评:此题为典型的利用导数求高次函数在某闭区间上的最值问题,一般情况下,高次函数求最值我们都要利用导数。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共13分)
已知函数).
(Ⅰ)求函数的单调区间;
(Ⅱ)函数的图像在处的切线的斜率为若函数,在区间(1,3)上不是单调函数,求 的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数在区间上单调递减,则实数的取值范围为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知命题P:函数R上的减函数,命题Q:在 时,不等式恒成立,若命题“”是真命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知R,函数
(1)求的单调区间;
(2)证明:当时,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 的导数.
(1)当时,求的单调区间和极值;
(2)设,是否存在实数,对于任意的,存在,使得成立?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
∈R,函数 =),其中e是自然对数的底数.
(1)判断f (x)在R上的单调性;
(2)当– 1 << 0时,求f (x)在[1,2]上的最小值.
选做题:请考生从给出的3道题中任选一题做答,并在答题卡上把所选题目的题号用2B铅笔涂黑.注意所做题目的题号必须与所涂的题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知函数
(1) 求a的值;
(2) 证明的奇偶性;
(3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数
(Ⅰ)讨论函数的单调区间;
(Ⅱ)若恒成立,求的取值范围。

查看答案和解析>>

同步练习册答案