精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$\left\{\begin{array}{l}{|lnx|,0<x≤{e}^{3}}\\{-x+{e}^{3}+3,x>{e}^{3}}\end{array}\right.$,存在x1<x2<x3,f(x1)=f(x2)=f(x3),则$\frac{f({x}_{3})}{{x}_{2}}$的最大值为$\frac{1}{e}$.

分析 作出f(x)的函数图象,得出x1,x2,x3的关系和范围,从而计算出答案.

解答 解:作出f(x)的函数图象如图所示:

∵存在x1<x2<x3,f(x1)=f(x2)=f(x3),
∴1$<{x}_{2}<{e}^{3}$,
∴$\frac{f({x}_{3})}{{x}_{2}}$=$\frac{f({x}_{2})}{{x}_{2}}$=$\frac{ln{x}_{2}}{{x}_{2}}$,
令g(x)=$\frac{lnx}{x}$,x∈(1,e3),则g′(x)=$\frac{1-lnx}{{x}^{2}}$,
∴当1<x<e时,g′(x)>0,当e<x<e3时,g′(x)<0,
∴g(x)在(1,e)上单调递增,在(1,e3)上单调递减,
∴当x=e时,g(x)取得最大值g(e)=$\frac{1}{e}$.
∴$\frac{ln{x}_{2}}{{x}_{2}}$的最大值为$\frac{1}{e}$.
故答案为$\frac{1}{e}$.

点评 本题考查了函数的单调性判断,函数最值的计算,找出x2的范围,构造函数g(x)是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.曲线$\sqrt{2}$ρ=4sin(x+$\frac{π}{4}$)与曲线$\left\{\begin{array}{l}{x=\frac{1}{2}-\frac{\sqrt{2}}{2}t}\\{y=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\end{array}\right.$的位置关系是(  )
A.相交过圆心B.相交C.相切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.满足条件|z-i|+|z+i|=4的复数z在复平面上对应点的轨迹是(  )
A.一条直线B.两条直线C.D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-a|-|x-4|(x∈R,a∈R)的值域为[-3,3].
(Ⅰ)求实数a的值;
(Ⅱ)若存在x0∈R,使得f(x0)≤2m-m2,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知中心在原点,焦点在x轴上的椭圆C过点(1,$\frac{\sqrt{2}}{2}$),离心率为$\frac{{\sqrt{2}}}{2}$,A1,A2是椭圆C的长轴的两个端点(A2位于A1右侧),B是椭圆在y轴正半轴上的顶点.
(1)求椭圆C的标准方程;
(2)是否存在经过点(0,$\sqrt{2}$)且斜率为k的直线l与椭圆C交于不同两点P和Q,使得向量$\overrightarrow{OP}$+$\overrightarrow{OQ}$与$\overrightarrow{{A_2}B}$共线?如果存在,求出直线方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知△ABC中,内角A,B,C的对边分别为a,b,c,b=2,B=45°,若三角形有两解,则a的取值范围是(  )
A.a>2B.0<a<2C.2<a<2$\sqrt{2}$D.2<a<2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,点P(1,$\frac{\sqrt{2}}{2}$)在椭圆E上,直线l过椭圆的右焦点F且与椭圆相交于A,B两点.
(1)求E的方程;
(2)在x轴上是否存在定点M,使得$\overrightarrow{MA}$•$\overrightarrow{MB}$为定值?若存在,求出定点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的右焦点为(2,0).则此双曲线的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)在点x0附近有定义,且有f(x0+△x)-f(x0)=a△x+b(△x)2,其中a,b为常数,则(  )
A.f'(x)=aB.f'(x)=bC.f'(x0)=aD.f'(x0)=b

查看答案和解析>>

同步练习册答案