精英家教网 > 高中数学 > 题目详情

已知函数(a是常数,a∈R)
(1)当a=1时求不等式的解集.
(2)如果函数恰有两个不同的零点,求a的取值范围.

(1);(2)

解析试题分析:(1)本题含有绝对值符号,解题时我们只要根据绝对值的定义去掉绝对值符号分类讨论即可,实际上,因此分成情况分别求解,最后归总;(2)函数有两个零点,可以转化为函数的图象与直线有两个不同交点问题,只要作出其图象就能得到结论.
(1)   
的解为                --5分
(2)由得,
,,作出它们的图象,可以知道,当时,
这两个函数的图象有两个不同的交点,所以函数有两个不同的零点.    -10分
考点:(1)解不等式;(2)函数零点与函数图象交点问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中为自然对数的底数.
(Ⅰ)设是函数的导函数,求函数在区间上的最小值;
(Ⅱ)若,函数在区间内有零点,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求函数的最小值;
(2)对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=,x∈,
(1) 当a=时,求函数f(x)的最小值;
(2) 若函数的最小值为4,求实数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某幼儿园准备建一个转盘,转盘的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为k元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y元.
(1)试写出y关于x的函数关系式,并写出定义域;
(2)当k=50米时,试确定座位的个数,使得总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数对任意都满足,且,数列满足:.
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式;
(Ⅲ)若,试问数列是否存在最大项和最小项?若存在,求出最大项和最小项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图已知中,,点是边上的动点,动点满足(点按逆时针方向排列).

(1)若,求的长;
(2)若,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的解集;
(2)设函数,若对任意的都成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义域为的偶函数.当时,若关于的方程有且只有7个不同实数根,则的值是.

查看答案和解析>>

同步练习册答案