精英家教网 > 高中数学 > 题目详情

【题目】如图,在四面体中,

(1)证明:

(2)若,四面体的体积为2,求二面角的余弦值

【答案】(1)见解析;(2)

【解析】分析:(1)作Rt△斜边上的高,连结,易证平面,从而得证;

(2)由四面体的体积为2,,得,所以平面,以轴建立空间直角坐标系,利用面的法向量求解二面角的余弦值即可.

详解:解法一:(1)如图,作Rt△斜边上的高,连结

因为,所以Rt△≌Rt△.可得.所以平面,于是

(2)在Rt△中,因为,所以,△的面积.因为平面,四面体的体积所以所以平面

轴建立空间直角坐标系.则

是平面的法向量,可取

是平面的法向量,可取

因为,二面角的平面角为钝角所以二面角的余弦值为

解法二:(1)因为,所以Rt△≌Rt△.可得

中点为连结所以平面,,于是

(2)在Rt△中,因为,所以△面积为.设到平面距离为,因为四面体的体积所以

在平面内过垂足为,因为,所以.由点到平面距离定义知平面

因为,所以因为所以所以即二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了位育龄妇女,结果如表.

非一线

一线

总计

愿生

不愿生

总计

附表:

算得,参照附表,得到的正确结论是( )

A. 在犯错误的概率不超过的前提下,认为“生育意愿与城市级别有关”

B. 以上的把握认为“生育意愿与城市级别有关”

C. 在犯错误的概率不超过的前提下,认为“生育意愿与城市级别无关”

D. 以上的把握认为“生育意愿与城市级别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季取暖时减少能源消耗,业主决定对房屋的屋顶和外墙喷涂某种新型隔热材料,该材料有效使用年限为20年.已知房屋外表喷一层这种隔热材料的费用为每毫米厚6万元,且每年的能源消耗费用(万元)与隔热层厚度(毫米)满足关系:.设为隔热层建造费用与年的能源消耗费用之和.

(1)请解释的实际意义,并求的表达式;

(2)当隔热层喷涂厚度为多少毫米时,业主所付的总费用最少?并求此时与不建隔热层相比较,业主可节省多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点为M,

(1)求过点M且到点P(0,4)的距离为2的直线l的方程;

(2)求过点M且与直线l3:x+3y+1=0平行的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(1)求张同学至少取到1道乙类题的概率;
(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是 ,答对每道乙类题的概率都是 ,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面斜坐标系中,,平面上任意一点关于斜坐标系的斜坐标是这样定义的:若(其中分别为与轴,轴同方向的单位向量),则点的斜坐标为

(1)若点在斜坐标系中的坐标为,求点到原点的距离.

(2)求以原点为圆心且半径为的圆在斜坐标系中的方程.

(3)在斜坐标系中,若直线交(2)中的圆于两点,则当为何值时,的面积取得最大值?并求此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形, ,且底面.

(1)证明:平面平面

(2)若的中点,且,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1的方程为x2+(y+1)2=4,圆C2的圆心坐标为(2,1).

(1)若圆C1与圆C2相交于AB两点,且|AB|=,求点C1到直线AB的距离;

(2)若圆C1与圆C2相内切,求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为点的坐标为.

(1)求过点且与圆相切的直线方程;

(2)过点任作一条直线与圆交于不同两点,且圆轴正半轴于点,求证:直线的斜率之和为定值.

查看答案和解析>>

同步练习册答案