【题目】已知椭圆()的离心率为,椭圆上一点到椭圆两焦点距离之和为,如图,为坐标原点,平行与的直线l交椭圆于不同的两点、.
(1)求椭圆方程;
(2)若的横坐标为,求面积的最大值;
(3)当在第一象限时,直线,交x轴于,,若PE=PF,求点的坐标.
【答案】(1)(2)面积的最大值为2(3)点坐标为
【解析】
(1)由题得,,解方程即得椭圆的方程;(2)设直线为,先求出,点到直线的距离,即得;(3)设点的坐标为,,,
根据得到,又,解方程组即得解.
(1)因为椭圆上一点到两焦点距离之和为,所以,即.
又因为椭圆的离心率为,所以,所以,
,所以椭圆方程为.
(2)设点,,
的横坐标代入,解得的纵坐标为,
所以直线的斜率为1,因为,
所以设直线为,联立,得,
,解得,
,,
所以,
点到直线的距离
,
当时取得等号,
所以面积的最大值为2.
(3)设点的坐标为,,,所以,即
则,设直线,联立,
整理得,
所以,,
因为,所以,,
所以,
化简得,
把,代入上式,化简得,
∵,,所以,,因此点坐标为.
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体有8个不同顶点,现任意选择其中4个不同顶点,然后将它们两两相连,可组成平面图形成空间几何体.在组成的空间几何体中,可以是下列空间几何体中的________.(写出所有正确结论的编号)
①每个面都是直角三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是全等的直角三角形的四面体;
④有三个面为等腰直角三角形,有一个面为等边三角形的四面体.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.
(1)若a=1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年森林城市建设座谈会在深圳举行.会上宣读了国家森林城市称号批准决定,并举行授牌仪式,滕州市榜上有名,被正式批准为“国家森林城市”.为进一步推进国家森林城市建设,我市准备制定生态环境改造投资方案,该方案要求同时具备下列两个条件:
①每年用于风景区改造的费用随每年改造生态环境总费用增加而增加;②每年用于风景区改造的费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.若每年改造生态环境的总费用至少1亿元,至多4亿元;请你分析能否采用函数模型作为生态环境改造投资方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若=12,其中O为坐标原点,求|MN|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com