【题目】如图所示,在四棱锥中,是边长为的正三角形,点为正方形的中心,为线段的中点,.则下列结论正确的是( )
A.平面平面
B.直线与是异面直线
C.线段与的长度相等
D.直线与平面所成的角的余弦值为
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,两焦点与短轴的一个端点的连线构成的三角形面积为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设与圆O:相切的直线l交椭圆C于A,B两点(O为坐标原点),求△AOB面积的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,点E,F分别是BC,PC的中点,用向量方法解决以下问题:
(1)求异面直线AE与PD所成角的大小;
(2)若AB=AP,求二面角E﹣AF﹣C的余弦值的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形为矩形,平面,,,,.
(Ⅰ)求证:平面;
(Ⅱ)点在线段上,且,过、、三点的平面将多面体分成两部分,设上、下两部分的体积分别为、,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市有一特色酒店由一些完全相同的帐篷构成.每座帐篷的体积为立方米,且分上下两层,其中上层是半径为(单位:米)的半球体,下层是半径为米,高为米的圆柱体(如图).经测算,上层半球体部分每平方米建造费用为2千元,下方圆柱体的侧面、隔层和地面三个部分平均每平方米建造费用为3千元,设每座帐篷的建造费用为千元.
参考公式:球的体积,球的表面积,其中为球的半径.
(1)求关于的函数解析式,并指出该函数的定义域;
(2)当半径为何值时,每座帐篷的建造费用最小,并求出最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com