精英家教网 > 高中数学 > 题目详情
已知
π
2
<β<α<
4
,cos(α-β)=
12
13
,sin(α+β)=-
3
5
,则sinα+cosβ=
6
65
65
6
65
65
分析:可先确定α-β与α+β的范围,α=
(α-β)+(α+β)
2
,β=
(α+β)-(α-β)
2
,再利用半角公式求值即可.
解答:解:∵
π
2
<β<α<
4

∴-
4
<-β<-
π
2

∴π<α+β<
2
,0<α-β<
π
4

又cos(α-β)=
12
13
,sin(α+β)=-
3
5

∴sin(α-β)=
1-cos2(α-β)
=
5
13

cos(α+β)=-
4
5

∴cos[(α-β)+(α+β)]=cos(α-β)cos(α+β)-sin(α-β)sin(α+β)
=
12
13
×(-
4
5
)-
5
13
×(-
3
5

=-
33
65

同理可求:cos[(α+β)-(α-β)]=-
63
65

又α=
(α-β)+(α+β)
2
,β=
(α+β)-(α-β)
2

π
2
<β<α<
4
可知,sinα>0,cosβ<0.
∴sinα=sin
(α-β)+(α+β)
2
=
1-cos[(α-β)+(α+β)]
2
=
1- (-
33
65
)
2
=
7
65

cosβ=cos
(α+β)-(α-β)
2
=-
1+cos[(α+β)-(α-β)]
2
=-
1+ (-
63
65
)
2
=-
1
65

∴sinα+cosβ=
6
65
=
6
65
65

故答案为:
6
65
65
点评:本题考查半角公式,用α-β与α+β表示出α与β是解题的关键,着重考查两角和与差的余弦及半角公式,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(
x
2
+
π
6
)+3
,(x∈R)
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)求单调增减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα=
1
2
,则sin(
2
-2α)=
-
1
2
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-2<x<y<3,则x-y的取值范围为
(-5,0)
(-5,0)

查看答案和解析>>

科目:高中数学 来源:志鸿系列训练必修一数学苏教版 苏教版 题型:044

已知2∈{x|x2+ax-3=0},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知-2<x<y<3,则x-y的取值范围为________.

查看答案和解析>>

同步练习册答案