精英家教网 > 高中数学 > 题目详情
4.在△ABC中,角A,B,C所对的边分别为a,b,c,且$cosA=\frac{3}{4},C=2A$.
(1)求sinB的值;
(2)若a=4,求△ABC的面积S的值.

分析 (1)由已知利用同角三角函数基本关系式可求sinA,利用二倍角的余弦函数公式可求cosC=cos2A的值,利用同角三角函数基本关系式可求sinC的值,利用三角形内角和定理,诱导公式,两角和的正弦函数公式可求sinB的值.
(2)由正弦定理可求b,进而利用三角形面积公式即可计算得解.

解答 (本题满分为12分)
解:(1)∵由$cosA=\frac{3}{4}$得$sinA=\frac{{\sqrt{7}}}{4}$,…(1分)
∴cosC=cos2A=cos2A-sin2A=$\frac{1}{8}$,…2分
∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{3\sqrt{7}}{8}$,…3分
又∵A+B+C=π,sinB=sin[π-(A+C)]=sin(A+C),…4分
∴$sinB=sin({A+C})=sinAcosC+cosAsinC=\frac{{5\sqrt{7}}}{16}$.…(6分)
(2)由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$得$b=\frac{asinB}{sinA}=5$,…(9分)
∴△ABC的面积$S=\frac{1}{2}absinC=\frac{{15\sqrt{7}}}{4}$.…(12分)

点评 本题主要考查了同角三角函数基本关系式,二倍角的余弦函数公式,三角形内角和定理,诱导公式,两角和的正弦函数公式,正弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系xOy中,双曲线$\frac{x^2}{3}-{y^2}=1$的一条准线与抛物线y2=2px(p>0)的准线重合,则实数p的值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若?(p∧q)为假命题,则(  )
A.p为真命题,q为假命题B.p为假命题,q为假命题
C.p为真命题,q为真命题D.p为假命题,q为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数$f(x)=x+\frac{1}{x}+a$为定义在(-∞,0)∪(0,+∞)上的奇函数.
(1)求实数a的值;
(2)判断函数f(x)在区间(a+1,+∞)上的单调性,并用定义法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.2016年1月某校高三年级1600名学生参加了教育局组织的期末统考,已知数学考试成绩X~N(100,σ2)(试卷满分为150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的$\frac{3}{4}$,则此次统考中成绩不低于120分的学生人数约为(  )
A.80B.100C.120D.200

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“?x∈R,x2-x≥0”的否定是(  )
A.?x∈R,x2-x<0B.?x∈R,x2-x≤0
C.$?{x_0}∈R,{x_0}^2-{x_0}≤0$D.$?{x_0}∈R,x_0^2-{x_0}<0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在四棱锥中P-ABCD,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$AD、E、F,分别为PC、BD的中点.
(1)求证:EF∥平面PAD;
(2)若AB=2,求三棱锥E-DFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$.
(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程;
(Ⅱ)设P为曲线C1上的动点,求点P到C2上点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对于函数f(x)和实数M,若存在m,n∈N*,使f(m)+f(m+1)+f(m+2)+…+f(m+n)=M成立,则称(m,n)为函数f(x)关于M的一个“生长点”.若(1,2)为函数$f(x)=cos({\frac{π}{2}x+\frac{π}{3}})$关于M的一个“生长点”,则M=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案