精英家教网 > 高中数学 > 题目详情

【题目】某调研机构,对本地岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,结果显示,有人为“低碳族”,该人的年龄情况对应的频率分布直方图如图.

1)根据频率分布直方图,估计这名“低碳族”年龄的平均值,中位数;

2)若在“低碳族”且年龄在的两组人群中,用分层抽样的方法抽取人,试估算每个年龄段应各抽取多少人?

【答案】1)平均值为,中位数为;(2)年龄在人,在.

【解析】

1)将频率分布直方图中每个矩形底边的中点值乘以矩形的面积,再将这些乘积相加可得出平均值,利用中位数左右两边的矩形面积和均为计算出矩形的面积;

2)先计算出年龄在的频率之比,再利用分层抽样的特点得出样本中年龄段在的人数.

1位“低碳族”的年龄平均值

设中位数为,前三个矩形的面积为

前四个矩形的面积为,则

由题意可得,解得,因此,中位数为

2)年龄在的频率分别为

频率之比为,所抽取的人中,年龄在的人数为

年龄在的人数为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面 的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足,且为偶函数,若内单调递减,则下面结论正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体中,是正三角形,是直角三角形,.

1)证明:平面平面

2)若点中点,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:

2)判断的零点个数,并给出证明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过其焦点的直线与抛物线相交于两点,满足.

1)求抛物线的方程;

2)已知点的坐标为,记直线的斜率分别为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考查某种药物预防疾病的效果,随机抽查了50只服用药的动物和50只未服用药的动得知服用药的动物中患病的比例是,未服用药的动物中患病的比例为.

(I)根据以上数据完成下列2×2列联表:

患病

未患病

总计

服用药

没服用药

总计

(II)能否有99%的把握认为药物有效?并说明理由.

附:

0.10

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是(  )

A. 甲的极差是29 B. 甲的中位数是24

C. 甲罚球命中率比乙高 D. 乙的众数是21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的命题是(  )

A.abcd,则acbdB.,则 ab

C.bc,则|a|b|a|cD.abcd,则acbd

查看答案和解析>>

同步练习册答案