精英家教网 > 高中数学 > 题目详情
3.已知点A(1,1),B(-1,5),向量$\overrightarrow{AC}$=2$\overrightarrow{AB}$,则点C的坐标为(-3,9).

分析 向量$\overrightarrow{AC}$=2$\overrightarrow{AB}$,利用向量三角形法则可得:$\overrightarrow{OC}$=$2\overrightarrow{OB}$-$\overrightarrow{OA}$,代入化简即可得出.

解答 解:∵向量$\overrightarrow{AC}$=2$\overrightarrow{AB}$,
∴$\overrightarrow{OC}-\overrightarrow{OA}$=2$(\overrightarrow{OB}-\overrightarrow{OA})$,
∴$\overrightarrow{OC}$=$2\overrightarrow{OB}$-$\overrightarrow{OA}$
=2(-1,5)-(1,1)=(-3,9),
故答案为:(-3,9).

点评 本题考查了向量的坐标运算性质、向量的三角形法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知一个几何体的三视图如图所示,正视图和侧视图是两个的全等的等腰梯形,梯形上底、下底分别为2,4,腰长为$\sqrt{10}$,则该几何体的体积为(  )
A.$\frac{28}{3}$$\sqrt{10}$-3πB.28-2πC.28-3πD.$\frac{28}{3}$$\sqrt{10}$-2π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=x3-12x(x∈R)的极大值点是(  )
A.-2B.2C.(-2,16)D.(2,-16)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的奇函数f(x)满足f(x)=f(x-4),且在[0,2)上单调递增,则下列结论中正确的是(  )
A.0<f(-1)<f(5)B.f(-1)<f(5)<0C.f(5)<f(-1)<0D.f(-1)<0<f(5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.用系统抽样的方法从个体数为1003的总体中抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的概率为(  )
A.$\frac{1}{1000}$B.$\frac{1}{1003}$C.$\frac{50}{1000}$D.$\frac{50}{1003}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{3}$sinωxcosωx-$\frac{1}{2}$cos2ωx,ω>0,x∈R,且函数f(x)的最小正周期为π;
(1)求ω的值和函数f(x)的单调增区间;
(2)在△ABC中,角A、B、C所对的边分别是a、b、c,又f($\frac{A}{2}$+$\frac{π}{3}$)=$\frac{4}{5}$,b=2,△ABC的面积等于3,求边长a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x、y∈R+,且满足$\frac{1}{x}$+$\frac{2}{y}$=2,则8x+y的取值范围是[9,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C的焦点在x轴上,离心率e=$\frac{\sqrt{2}}{2}$,其长轴的左端点到左焦点的距离为2-$\sqrt{2}$.
(1)求椭圆C的标准方程;
(2)直线l为圆x2+y2=1上的一条切线,交椭圆C于A,B两点,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设α、β表示不同的平面,l表示直线,A、B、C表示不同的点,给出下列三个命题:
①若A∈l,A∈α,B∈l,B∈α,则l?α
②若A∈α,A∈β,B∈α,B∈β,则α∩β=AB
③若l∉α,A∈l,则A∉α
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案