精英家教网 > 高中数学 > 题目详情
(本小题满分10分)
如图,在三棱锥中,底面, 点分别在棱上,且 
    
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的正弦值;
(Ⅰ)见解析;(Ⅱ)与平面所成的角的正弦值为
本试题主要是考查了线面垂直的判定定理的运用,以及线面角的求解的综合运用。
(1)根据已知条件,PA⊥底面ABC,∴PA⊥BC.
,∴AC⊥BC.∴BC⊥平面PAC.
(2)∵D为PB的中点,DE//BC,
,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E.∴∠DAE是AD与平面PAC所成的角,然后借助于三角形得到求解。
解法1(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC.
,∴AC⊥BC.
∴BC⊥平面PAC.
(Ⅱ)∵D为PB的中点,DE//BC,

又由(Ⅰ)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,
∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP为等腰直角三角形,∴
∴在Rt△ABC中,,∴.
∴在Rt△ADE中,
与平面所成的角的正弦值为

解法2如图,以A为原煤点建立空间直角坐标系
,由已知可得
.
(Ⅰ)∵,     
,∴BC⊥AP.
又∵,∴BC⊥AC,∴BC⊥平面PAC.
(Ⅱ)∵D为PB的中点,DE//BC,∴E为PC的中点,

∴又由(Ⅰ)知,BC⊥平面PAC,∴∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,

.
与平面所成的角的正弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,在长方体中,,点在棱上移动.

⑴ 证明://平面
⑵证明:
⑶ 当的中点时,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥中,侧面⊥底面,底面是边长为的正方形,又分别是的中点.
(Ⅰ)求证:
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图1,在三棱锥P-A.BC中,PA.⊥平面A.BC,A.C⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.

(1) 证明:A.D⊥平面PBC;
(2) 求三棱锥D-A.BC的体积;
(3) 在∠A.CB的平分线上确定一点Q,使得PQ∥平面A.BD,并求此时PQ的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,平面
侧棱上一点,它的正(主)视图和侧(左)视图如图所示.
(1)证明:平面
(2)求三棱锥的体积;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)(如图)在底半径为,母线长为的圆锥中内接一个高为的圆柱,求圆柱的表面积

(2)如图,在四边形中,,求四边形旋转一周所成几何体的表面积及体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个几何体的三视图如右图所示,其中正视图中△ABC是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为
A.12B.C.D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,一个几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个直径为2的圆,则这个几何体的全面积是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如右图,一几何体的三视图:则这个几何体是(   )

Com
A.圆柱B.空心圆柱
C.圆 锥D.圆台

查看答案和解析>>

同步练习册答案