精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知
(Ⅰ)求的值;
(Ⅱ)求的值.

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)利用正切的两角和公式求的值(Ⅱ)利用第一问的结果求第二问,但需要先将式子化简变形成关于的式子。只需化简分子即可,应先将此式子化为分式,即除以1,也就是,然后分子分母都除以。然后代入即可。
试题解析:解:(Ⅰ)因为      
      
于是      
(另解:)
(Ⅱ)         
      
      
      
(另解:



)    
(请根据答题步骤酌情给分)  
考点:三角函数公式,以及化简变形

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的周期为.

(1)若,求它的振幅、初相;
(2)在给定的平面直角坐标系中作出该函数在的图像;
(3)当时,根据实数的不同取值,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若点在角的终边上,求的值;(Ⅱ)若,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知.
(1)求证:;
(2)若求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知锐角三角形ABC中,向量,且
(1)求角B的大小;
(2)当函数y=2sin2A+cos()取最大值时,判断三角形ABC的形状。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的单调减区间;
(Ⅱ)求在区间上最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(Ⅰ)已知函数)的最小正周期为.求函数的单调增区间;
(Ⅱ)在中,角对边分别是,且满足.若的面积为.求角的大小和边b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量,函数.
(1)求函数的单调递增区间;
(2)求使不等式成立的的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米.

(1)现在准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D,E,F,如图(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面积S△DEF的最大值;
(2)现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,如图(2),建造△DEF
连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,求△DEF边长的最小值.

查看答案和解析>>

同步练习册答案