(本小题满分13分)
已知函数是定义在上的奇函数.
(Ⅰ)求的值;
(Ⅱ)求函数的值域;
(Ⅲ)当时,恒成立,求实数的取值范围.
(1) (2) 函数的值域(3)
【解析】
试题分析:.解:(Ⅰ)∵是奇函数
∴
又
∴,
即对任意恒成立,
∴
(或者利用,求得,再验证是奇函数) …………………4分
(Ⅱ)∵
又∵, ∴
∴,
∴函数的值域 ……………………7分
(Ⅲ)由题意得,当时,
即恒成立,
∵,∴,
∴()恒成立, ……………………9分
设
下证在当时是增函数.
任取,则
…………………………11分
∴当时,是增函数,
∴
∴
∴实数的取值范围为. …………………………13分
考点:本试题考查了函数的性质运用。
点评:解决该试题关键是对于函数奇偶性概念和单调性概念的运用,并能结合不等式 恒成立问题,分离参数思想求解参数的取值范围。属于中档题。
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com