精英家教网 > 高中数学 > 题目详情

 已知⊙M:,Q是x轴上的动点,QA,QB分别切⊙M于A,B两点。(1)如果,求直线MQ的方程;(2)求动弦AB的中点P的轨迹方程。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

 解:

(1)由

可得:

由射影定理,得,得:

,得:,则

所以直线MQ的方程是:

(2)设P(x,y),Q(,0),由点M,P,Q共线,得:…①

由射影定理得:,即 …②

从①②中削去,可得

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B分别是x轴和y轴上的两个动点,满足|AB|=2,点P在线段AB上,且
AP
=t
PB
(t是不为0的常数),设点P的轨迹方程为C.
(Ⅰ)求点P的轨迹方程C;
(Ⅱ)若曲线C为焦点在x轴上的椭圆,试求实数t的取值范围;
(Ⅲ)若t=2,点M、N是C上关于原点对称的两个动点,点Q的坐标为(
3
2
,3)
,求△QMN的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为2
3
,D是AB的中点.
(1)求动点D的轨迹C的方程;
(2)若过点(1,0)的直线l与曲线C交于不同两点P、Q,
①当|PQ|=3时,求直线l的方程;
②设点E(m,0)是x轴上一点,求当
PE
QE
恒为定值时E点的坐标及定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙M:x2+(y-2)2=1,Q是x轴上的动点,QA、QB分别切⊙M于A、B两点.
(Ⅰ)求证直线AB恒过一个定点;
(Ⅱ)求动弦AB的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F1(-1,0),F2(1,0),动点G满足|GF1|+|GF2|=2
2

(Ⅰ)求动点G的轨迹Ω的方程;
(Ⅱ)已知过点F2且与x轴不垂直的直线l交(Ⅰ)中的轨迹Ω于P、Q两点.在线段OF2上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案