精英家教网 > 高中数学 > 题目详情

【题目】如图,在ABC中,BAB=8,点DBC边上,且CD=2,cos∠ADC.

(1)sin ∠BAD

(2)BDAC的长.

【答案】(1) .

(2)BD=3;AC=7.

【解析】分析:(1)由已知利用同角三角函数基本关系式可求,利用两角差的正弦函数公式可求的值.
(2)在中,由正弦定理得,在中,由余弦定理即可解得的值.

详解:

 (1)ADC中,因为cos∠ADC,所以sin ∠ADC.

所以sin ∠BAD=sin(∠ADC-∠B)

=sin ∠ADCcos∠B-cos∠ADCsin ∠B××.

(2)ABD中,由正弦定理得BD=3.

ABC中,由余弦定理得

AC2AB2BC2-2AB·BC·cos∠B=82+52-2×8×5×=49.

所以AC=7.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.

(I)若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;

(II)若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点为 ,且点 在椭圆 上.
(1)求椭圆 的标准方程;
(2)过椭圆 上异于其顶点的任意一点 作圆 的两条切线,切点分别为 不在坐标轴上),若直线 轴, 轴上的截距分别为 ,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}(nN*)满足:a1=1,an1-sin2θ·an=cos 2θ·cos2nθ,其中θ.

(1)θ时,求数列{an}的通项公式;

(2)(1)的条件下,若数列{bn}满足bn=sin+cos (nN*n≥2),且b1=1,求证:对任意的nN*,1≤bn恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 的经过中心的弦称为椭圆的一条直径,平行于该直径的所有弦的中点的轨迹为一条线段,称为该直径的共轭直径,已知椭圆的方程为 .

(1)若一条直径的斜率为 ,求该直径的共轭直径所在的直线方程;
(2)若椭圆的两条共轭直径为 ,它们的斜率分别为 ,证明:四边形 的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前n项和为,且满足,数列满足,且..

(1)求数列的通项公式;

(2)求数列的前项的

(3)将数列的项相间排列构成新数列,设新数列的前项和为,若对任意正整数n都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,底面边长为2,的中点,三棱柱的体积.

(1)求三棱柱的表面积;

(2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,.

(1)f(x)的最小正周期和最大值;(2)讨论f(x)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水受日月的引力,在一定的时候发生涨落的现象叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天时间与水深(单位:米)的关系表:

时刻

0:00

3:00

6:00

9:00

12:00

15:00

18:00

21:00

24:00

水深

10.0

13.0

9.9

7.0

10.0

13.0

10.1

7.0

10.0

(1)请用一个函数来近似描述这个港口的水深y与时间t的函数关系;

(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上认为是安全的(船舶停靠时,船底只要不碰海底即可)。某船吃水深度(船底离地面的距离)为6.5米。

Ⅰ)如果该船是旅游船,1:00进港希望在同一天内安全出港,它至多能在港内停留多长时间(忽略进出港所需时间)?

Ⅱ)如果该船是货船,在2:00开始卸货,吃水深度以每小时0.5米的速度减少,由于台风等天气原因该船必须在10:00之前离开该港口,为了使卸下的货物尽可能多而且能安全驶离该港口,那么该船在什么整点时刻必须停止卸货(忽略出港所需时间)?

查看答案和解析>>

同步练习册答案