精英家教网 > 高中数学 > 题目详情

如图所示,在正△ABC中,点D,E分别在边AC,AB上,且AD=AC,AE=AB,BD,CE相交于点F.

(1)求证:A,E,F,D四点共圆;

(2)若正△ABC的边长为2,求A,E,F,D所在圆的半径.

 

【答案】

(1)见解析   (2)

【解析】

(1)证明:∵AE=AB,∴BE=AB.

又∵AD=AC,AB=AC,∴AD=BE.

又∵AB=BC,∠BAD=∠CBE,

∴△BAD≌△CBE,∴∠ADB=∠BEC,

∴∠ADF+∠AEF=π,

∴A,E,F,D四点共圆.

(2)解:如图所示,取AE的中点G,连接GD,则AG=GE=AE.

∵AE=AB,∴AG=GE=AB=.

∵AD=AC=,∠DAE=60°,

∴△AGD为正三角形,

∴GD=AG=AD=,即GA=GE=GD=,

所以点G是△AED外接圆的圆心,且圆G的半径为.

由于A,E,F,D四点共圆,即A,E,F,D四点共圆G,其半径为.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网
如图所示,在正三棱柱ABC-A1B1C1中,AA1=3,AB=2,D是A1B1的中点,E在线段CC1上且C1E=2.
(1)证明:DC⊥面ABE;
(2)求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在正三棱柱ABC-A1B1C1中,D是AC的中点,AA1:AB=
2
:1,则异面直线AB1与BD所成的角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正三棱柱ABC-A1B1C1中,AB=AC=BC=BB1=2,D点为棱AB的中点.
(1)求证:AC1∥平面CDB1
(2)求BB1与平面CDB1所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)如图所示,在正三棱柱ABC-A1B1C1中,底面边长和侧棱长都是2,D是侧棱CC1上任意一点,E是A1B1的中点.
(I)求证:A1B1∥平面ABD;
(II)求证:AB⊥CE;
(III)求三棱锥C-ABE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在正三棱柱ABC-A1B1C1中,底面边长和侧棱长都是3,D是侧棱CC1上一点且C1D=2DC,E是A1B1的中点.
(1)求证:AB⊥CE;
(2)求异面直线AD与BC所成角的余弦值.

查看答案和解析>>

同步练习册答案