【题目】已知函数.
(1)证明:当时,函数在上是单调函数;
(2)当时,恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】德国数学家科拉茨1937年提出一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定.现在请你研究:如果对正整数(首项)按照上述规则进行变换后的第9项为1(注:1可以多次出现),则的所有不同值的个数为( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价x(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.
(1)把y表示为x的函数;
(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数;
(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果函数的定义域为R,且存在实常数,使得对于定义域内任意,都有成立,则称此函数为“完美函数”.
(1)判断函数是否为“完美函数”.若它是“完美函数”,求出所有的的取值的集合;若它不是,请说明理由.
(2)已知函数是“完美函数”,且是偶函数.且当0时,.求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过圆 : 上的点 作 轴的垂线,垂足为 ,点 满足 .当 在 上运动时,记点 的轨迹为 .
(1)求 的方程;
(2)过点 的直线 与交于 , 两点,与圆 交于 , 两点,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在R上的奇函数,其中为指数函数,且的图象过定点.
(1)求函数的解析式;
(2)若关于x的方程,有解,求实数a的取值范围;
(3)若对任意的,不等式恒成立,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com