精英家教网 > 高中数学 > 题目详情
已知数列{an}是首项a1=1的等比数列,其前n项和Sn中,S3、S4、S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=2log
1
2
|an|+1
,求数列{bn}的前n项和为Tn
(3)求满足(1-
1
T2
)(1-
1
T3
)•…•(1-
1
Tn
)>
1013
2013
的最大正整数n的值.
分析:(1)依题意,等比数列{an}的公比q≠1,由S3、S4、S2成等差数列可列式求得q,从而可求得数列{an}的通项公式;
(2)由(1)知,an=(-
1
2
)
n-1
,从而可求得bn=2n-1,数列{bn}为等差数列,利用等差数列的求和公式即可求得数列{bn}的前n项和为Tn
(3))可求得(1-
1
T2
)(1-
1
T3
)…(1-
1
Tn
)=(1-
1
22
)(1-
1
32
)…(1-
1
n2
)=
n+1
2n
,由
n+1
2n
1013
2013
,可求得最大正整数n的值.
解答:解:(1)若q=1,则S3=3,S4=4,S2=2,显然S3,S4,S2不构成等差数列,
∴q≠1.
故由S3,S4,S2成等差数列得:2•
a1(1-q4)
1-q
=
a1(1-q3)
1-q
+
a1(1-q2)
1-q
…(2分)
∴2q4=q3+q2⇒2q2-q-1=0⇒(2q+1)(q-1)=0,
∵q≠1,
∴q=-
1
2
.…(4分)
∴an=1×(-
1
2
)
n-1
=(-
1
2
)
n-1
.…(5分)
(2)∵bn=2log
1
2
|an|+1=2log
1
2
|(-
1
2
)
n-1
|+1=2log
1
2
(
1
2
)
n-1
+1=2(n-1)+1=2n-1…(7分)
∴Tn═1+3+…+(2n-1)=
n(1+2n-1)
2
=n2.…(9分)
(3)(1-
1
T2
)(1-
1
T3
)…(1-
1
Tn

=(1-
1
22
)(1-
1
32
)…(1-
1
n2

=
22-1
22
32-1
32
n2-1
n2
=
1•3•2•4•3•5•…•(n-1)(n+1)
223242•…•n2
…(11分)
=
n+1
2n
.…(13分)
n+1
2n
1013
2013
,解得:n<154
11
13

故满足条件的最大正整数n的值为154.…(14分)
点评:本题考查数列的求和,考查等差数列的求和与对数函数的性质,考查方程思想与等价转化思想的综合应用,考查逻辑思维与运算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是首项为3,公差为2的等差数列,其前n项和为Sn,数列{bn}为等比数列,且b1=1,bn>0,数列{ban}是公比为64的等比数列.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求证:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=
1
4
的等比数列,其前n项和Sn中S3,S4,S2成等差数列,
(1)求数列{an}的通项公式;
(2)设bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求证:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1的等差数列,且公差不为零,而等比数列{bn}的前三项分别是a1,a2,a6
(I)求数列{an}的通项公式an
(II)若b1+b2+…bk=85,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1,公差为2的等差数列,又数列{bn}的前n项和Sn=nan
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若cn=
1bn(2an+3)
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=a,公差为2的等差数列,数列{bn}满足2bn=(n+1)an
(1)若a1、a3、a4成等比数列,求数列{an}的通项公式;
(2)若对任意n∈N*都有bn≥b5成立,求实数a的取值范围;
(3)数列{cn}满足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,当a=-20时,求f(n)的最小值(n∈N*).

查看答案和解析>>

同步练习册答案