精英家教网 > 高中数学 > 题目详情

【题目】某校举行“庆元旦”教工羽毛球单循环比赛(任意两个参赛队只比赛一场),共有高一、高二、高三三个队参赛,高一胜高二的概率为 ,高一胜高三的概率为 ,高二胜高三的概率为P,每场胜负独立,胜者记1分,负者记0分,规定:积分相同者高年级获胜.
(Ⅰ)若高三获得冠军概率为 ,求P.
(Ⅱ)记高三的得分为X,求X的分布列和期望.

【答案】解:(Ⅰ)高三获得冠军有两种情况,高三胜两场,三个队各胜一场.
高三胜两场的概率为
三个队各胜一场的概率为

解得:
(Ⅱ)高三的得分X的所有可能取值有0、1、2,
P(X=0)= ,P(X=1)= ,P(X=2)=
∴X的分布列为:

X

0

1

2

P

故X的期望E(X)=
【解析】(Ⅰ)由题意得到高三获得冠军的所有情况,然后利用相互独立事件及互斥事件的概率公式求出概率,由概率为 求得p值;(Ⅱ)写出高三的得分为X的所有取值,求出相应的概率,则分布列及期望可求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线C1:ρ=2cosθ,曲线C2:ρ=(ρcosθ+4)cosθ.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,曲线C的参数方程为 (t为参数). (Ⅰ)求C1 , C2的直角坐标方程;
(Ⅱ)C与C1 , C2交于不同四点,这四点在C上的排列顺次为H,I,J,K,求||HI|﹣|JK||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线E: (a>0,b>0)的右顶点为A,抛物线C:y2=8ax的焦点为F,若在E的渐近线上存在点P使得PA⊥FP,则E的离心率的取值范围是(
A.(1,2)
B.(1, ]
C.(2,+∞)
D.[ ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点F(0,1),且与定直线l:y=﹣1相切.
(1)求动圆圆心的轨迹C的方程;
(2)若点A(x0 , y0)是直线x﹣y﹣4=0上的动点,过点A作曲线C的切线,切点记为M,N.
①求证:直线MN恒过定点;
②△AMN的面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,
(1)证明:| a+ b|<
(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线G:y2=2px(p>0)焦点F的直线l与抛物线G交于M、N两点(M在x轴上方),满足 ,则以M为圆心且与抛物线准线相切的圆的标准方程为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点坐标为F1(﹣1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点M、N,则△F1MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是(
A.命题“p∧q”为假命题,则p,q均为假命题
B.命题“?x∈(0,+∞),2x>1”的否定是“?x°∈(0,+∞),2≤1”
C.命题“若a>b,则a2>b2”的逆否命题是“若a2<b2 , 则a<b”
D.设x∈R,则“x> ”是“2x2+x﹣1>0”的必要而不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1 , E、F分别是CC1 , BC的中点.
(1)求证:平面AB1F⊥平面AEF;
(2)求二面角B1﹣AE﹣F的余弦值.

查看答案和解析>>

同步练习册答案