精英家教网 > 高中数学 > 题目详情
15.若${log_{\frac{4}{5}}}a$<1,则a的取值范围是($\frac{4}{5},+∞$).

分析 把不等式两边化为同底数,然后利用对数函数的性质得答案.

解答 解:由${log_{\frac{4}{5}}}a$<1=$lo{g}_{\frac{4}{5}}\frac{4}{5}$,得a$>\frac{4}{5}$.
∴a的取值范围是($\frac{4}{5},+∞$).
故答案为:($\frac{4}{5},+∞$).

点评 本题考查对数不等式的解法,考查了对数函数的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设U={x∈Z|0<x≤10},A={1,2,4,5,9},B={4,6,7,8,10},C={3,5,7},
求A∩B,(CUA)∩(CUB),(A∩B)∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)对于函数f(x),g(x),已知f(6)=5,g(6)=4,f′(6)=3,g′(6)=1.如果h(x)=f(x)•g(x)-1,求h′(6)的值;
(2)直线y=$\frac{1}{2}$x+b能作为函数f(x)=sinx图象的切线吗?若能,求出切点坐标;若不能,简述理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在长方体ABCD-A′B′C′D′中,P、R分别为BC、CC′上的动点,当点P,R满足什么条件时,PR∥平面AB′D′?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.定义:圆心到直线的距离与圆的半径之比为直线关于圆的距离比λ;
(1)设圆C0:x2+y2=1,求过P(2,0)的直线关于圆C0的距离比λ=$\sqrt{3}$的直线方程;
(2)若圆C与y轴相切于点A(0,3),且直线y=x关于圆C的距离比λ=$\sqrt{2}$,求此圆C的方程;
(3)是否存在点P,使过P的任意两条互相垂直的直线分别关于相应两圆C1:(x+1)2+y2=1与C2:(x-3)2+(y-3)2=4的距离比始终相等?若存在,求出相应的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线Ax+3y+C=0与直线2x-3y+4=0的交点在y轴上,则C的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等比数列{an}的首项a1=1,公比为x(x>0),其前n项和为记为Sn,则函数$f(x)=\lim_{n→∞}\frac{S_n}{{{S_{n+1}}}}$的解析式为$f(x)=\left\{{\begin{array}{l}1&{0<x≤1}\\{\frac{1}{x}}&{x>1}\end{array}}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在复平面内复数z=$\frac{ai+1}{1-i}$(a>0),已知|z|=1则$\overline{z}$=(  )
A.iB.-iC.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=ax-1+2(a>0且a≠1)的图象一定经过点(  )
A.(0,1)B.(0,3)C.(1,2)D.(1,3)

查看答案和解析>>

同步练习册答案