精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱柱中,,且.

1)求证:

2)若四棱柱的体积为,求直线与平面所成角的正弦值.

【答案】1)证明见解析(2

【解析】

1)连接,通过证明,证得平面,由此证得.

2)先证得平面,由此判断出是直线与平面所成角,通过四棱柱的体积求得四棱柱的高,解三角形求得.

1)连接,在四棱柱中,四边形为平行四边形,

,∴四边形为菱形,∴

又∵

都包含于平面,且

所以平面,所以.

2)∵

平面,所以是直线与平面所成角.

因为,且,可知四边形为直角梯形,且为直角腰,取边中点,则四边形为矩形,可求得,得梯形的面积为,又因为四棱柱的体积为,得四棱柱的高为

因为平面,得平面平面,在菱形内作边上的高,垂足为,则平面

.故菱形,则为等边三角形,

求得.(或证明点与点重合,求得,求得

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】微信运动,是由腾讯开发的一个类似计步数据库的公众账号.用户可以通过关注微信运动公众号查看自己每天行走的步数,同时也可以和其他用户进行运动量的或点赞.微信运动公众号为了解用户的一些情况,在微信运动用户中随机抽取了100名用户,统计了他们某一天的步数,数据整理如下:

(万步)

()

5

20

50

15

5

5

1)根据表中数据,在如图所示的坐标平面中作出其频率分布直方图,并在纵轴上标明各小长方形的高;

2)利用分层抽样的方法,从步数在(万步)中抽取7人,再从这7人中随机抽取2人,求步数在(万步)的人恰有1人的概率;

3)这100名用户中,的用户为男生,这些男生的步数超过1.2万步的人为20人,是否有的把握认为运动步数超过1.2万步与性别有关?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求不等式的解集;

(2)若不等式对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,平面为线段的中点,且.

1)求证:平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足,设.

(Ⅰ)求证:数列是等比数列;

(Ⅱ)若,求实数的最小值;

(Ⅲ)当时,给出一个新数列,其中,设这个新数列的前项和为,若可以写成)的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)证明:在区间上有且仅有个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:

经计算: ,其中分别为试验数据中的温度和死亡株数, .

(1)若用线性回归模型,求关于的回归方程(结果精确到);

(2)若用非线性回归模型求得关于的回归方程为,且相关指数为.

(i)试与(1)中的回归模型相比,用说明哪种模型的拟合效果更好;

(ii)用拟合效果好的模型预测温度为时该批紫甘薯死亡株数(结果取整数).

附:对于一组数据 …… ,其回归直线的斜率和截距的最小二乘估计分别为: ;相关指数为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,.已知分别是的中点.沿折起,使的位置且二面角的大小是60°,连接,如图:

1)证明:平面平面

2)求平面与平面所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是直角梯形,,,侧面底面,是以为底的等腰三角形.

(Ⅰ)证明:

(Ⅱ)若四棱锥的体积等于.问:是否存在过点的平面分别交于点,使得平面平面?若存在,求出的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案