精英家教网 > 高中数学 > 题目详情

【题目】先阅读参考材料,再解决此问题:

参考材料:求抛物线弧)与x轴及直线所围成的封闭图形的面积

解:把区间进行n等分,得个分点),过分点,作x轴的垂线,交抛物线于,并如图构造个矩形,先求出个矩形的面积和,再求,即是封闭图形的面积,又每个矩形的宽为,第i个矩形的高为,所以第i个矩形的面积为

所以封闭图形的面积为

阅读以上材料,并解决此问题:已知对任意大于4的正整数n

不等式恒成立,

则实数a的取值范围为______

【答案】

【解析】

作出的图像,可得以0为原点,1为半径的圆在第一象限的部分,把区间进行n等分,得n-1个分点,过分点,作x轴的垂线,交抛物线于,并如图构造个矩形,先求出个矩形的面积和,再求,即为封闭图形的面积,运用圆的面积公式结合恒成立问题的解法,即可得解.

作出的图像,可得以0为原点,1为半径的圆在第一象限的部分,

把区间进行n等分,得n-1个分点,过分点,作x轴的垂线,交抛物线于,并如图构造个矩形,先求出个矩形的面积和,再求,即是封闭图形的面积,又每个矩形的宽为,第i个矩形的高为,所以第i个矩形的面积为

则封闭图形的面积为

恒成立,

可得的范围是.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在实数集上的偶函数和奇函数满足.

1)求的解析式;

2)若定义在实数集上的以2为最小正周期的周期函数,当时,,试求在闭区间上的表达式,并证明在闭区间上单调递减;

3)设(其中为常数),若对于恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cx22pyp0),直线l1ykx+t与抛物线C交于AB两点(A点在B点右侧),直线l2ykx+mmt)交抛物线CMN两点(M点在N点右侧),直线AM与直线BN交于点E,交点E的横坐标为2k,则抛物线C的方程为(

A.x2yB.x22yC.x23yD.x24y

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间内存在零点.

1)求的范围;

2)设的两个零点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应国家号召,打赢脱贫致富攻坚战,武汉大学团队带领湖北省大悟县新城镇熊湾村村民建立有机、健康、高端、绿色的蔬菜基地,并策划生产、运输、销售一体化的直销供应模式,据统计,当地村民两年时间成功脱贫.蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市,每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:,且.若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,若购进17份比购进18份的利润的期望值大,则x的最小值是________.

8小时内销售量

15

16

17

18

19

20

21

频数

10

x

16

16

15

13

y

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列.如果数列满足 ,其中,则称的“衍生数列”.

(Ⅰ)若数列的“衍生数列”是,求

(Ⅱ)若为偶数,且的“衍生数列”是,证明:的“衍生数列”是

(Ⅲ)若为奇数,且的“衍生数列”是的“衍生数列”是,….依次将数列,…的第项取出,构成数列 .证明:是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的左右焦点分别为,椭圆右顶点为,点在圆.

1)求椭圆的标准方程;

2)点在椭圆上,且位于第四象限,点在圆上,且位于第一象限,已知,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=丨x+a+1丨+丨x-丨,(a>0)。

(1)证明:f(x)≥5;

(2)若f(1)<6成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数x∈R,其中a,b∈R.

)求fx)的单调区间;

)若fx)存在极值点x0,且fx1= fx0),其中x1≠x0,求证:x1+2x0=3

)设a0,函数gx= |fx|,求证:gx)在区间[0,2]上的最大值不小于.

查看答案和解析>>

同步练习册答案