精英家教网 > 高中数学 > 题目详情
设Q是直线y=-1上的一个动点,O为坐标原点,过Q作x轴的垂线l,过O作直线OQ的垂线交直线l于P.
(1)求点P的轨迹C的方程.
(2)过点A(-2,4)作圆B:x2+(y-2)2=1的两条切线交曲线C于M、N两点,试判断直线MN与圆B的位置关系.
分析:(1)设P(x,y),则Q(x,-1),由OP⊥OQ得
y
x
-1
x
=-1
,由此能得到P点的轨迹C的方程.
(2)设过点A(-2,4)的直线为y=k(x+2)+4,把直线方程y=k(x+2)+4代入抛物线方程y=x2得x2-kx-2k-4=0
可得另一个根为x'=k+2,由相切知3k2+8k+3=0.由根与系数的关系能导出直线MN的方程为4x-3y+1=0,由此知直线MN与圆B相切.
解答:解:(1)设P(x,y),
则Q(x,-1),
由OP⊥OQ,得
y
x
-1
x
=-1

由此能得到P点的轨迹C的方程为x2=y.
(2):设过点A(-2,4)的直线为y=k(x+2)+4,
把直线方程y=k(x+2)+4代入抛物线方程y=x2
得x2-kx-2k-4=0,
可得另一个根为x'=k+2,
由相切知3k2+8k+3=0.
设k1,k2是方程的两个根,
由根与系数的关系能导出直线MN的方程为4x-3y+1=0,
由此知直线MN与圆B相切.
点评:本题考查直线与圆锥曲线的位置关系,解题时要注意公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)的上下焦点分别为F1,F1,短轴两个端点为P,P1,且四边形F1PF2P1是边长为2的正方形.
(1)求椭圆方程;
(2)设△ABC,AC=2
3
,B为椭圆
y2
a2
+
x2
b2
=1(a>b>0)在x轴上方的顶点,当AC在直线y=-1上运动时,求△ABC外接圆的圆心Q的轨迹E的方程;
(3)过点F(0,
3
2
)作互相垂直的直线l1l2,分别交轨迹E于M,N和R,Q.求四边形MRNQ的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设Q是直线y=-1上的一个动点,O为坐标原点,过Q作x轴的垂线l,过O作直线OQ的垂线交直线l于P.
(1)求点P的轨迹C的方程.
(2)过点A(-2,4)作圆B:x2+(y-2)2=1的两条切线交曲线C于M、N两点,试判断直线MN与圆B的位置关系.

查看答案和解析>>

科目:高中数学 来源:温州二模 题型:解答题

设Q是直线y=-1上的一个动点,O为坐标原点,过Q作x轴的垂线l,过O作直线OQ的垂线交直线l于P.
(1)求点P的轨迹C的方程.
(2)过点A(-2,4)作圆B:x2+(y-2)2=1的两条切线交曲线C于M、N两点,试判断直线MN与圆B的位置关系.

查看答案和解析>>

科目:高中数学 来源:2010年浙江省温州市高考数学二模试卷(文科)(解析版) 题型:解答题

设Q是直线y=-1上的一个动点,O为坐标原点,过Q作x轴的垂线l,过O作直线OQ的垂线交直线l于P.
(1)求点P的轨迹C的方程.
(2)过点A(-2,4)作圆B:x2+(y-2)2=1的两条切线交曲线C于M、N两点,试判断直线MN与圆B的位置关系.

查看答案和解析>>

同步练习册答案