精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知椭圆的左右焦点分别为,由4个点组成一个高为,面积为的等腰梯形.
(1)求椭圆的方程;
(2)过点的直线和椭圆交于两点,求面积的最大值.
(1)(2)取最大值3.

试题分析:解:(1)由条件,得b=,且
所以a+c=3.                                        2分
,解得a=2,c=1.                      
所以椭圆的方程.                        4分
(2)显然,直线的斜率不能为0,设直线方程为x=my-1,直线与椭圆交于A(x1,y1),B(x2,y2).
联立方程   ,消去x得,  
因为直线过椭圆内的点,无论m为何值,直线和椭圆总相交.
               6分
=                   8分
                           10分
,设,易知时,函数单调递减, 函数单调递增
所以   当t==1即m=0时,
取最大值3.                                       12分
点评:解决的关键是根据椭圆的性质来得到其方程,以及根据联立方程组的思想来得到面积的表示,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,若双曲线的焦距为8,则  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆mx2 + ny2 = 1与直线x+y-1=0交于A、B两点,过原点与线段AB中点的直线的斜率为,则=(  )
A.     B.        C.      D. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l过双曲线C的一个焦点,且与C的对称轴垂直,lC交于AB两点,C的实轴长的2倍,则双曲线C的离心率为(    )
A.B.2C.D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆具有性质:若是椭圆为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线的斜率都存在,并分别记为,那么之积是与点位置无关的定值
试对双曲线为常数写出类似的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点分别为,离心率,直线经过左焦点.
(1)求椭圆的方程;
(2)若为椭圆上的点,求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰直角三角形,则双曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的两个焦点恰为椭圆的两个顶点,且离心率为2,则该双曲线的标准方程为    (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的中心为原点,的焦点,过的直线相交于两点,且的中点为,则的方程为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案