精英家教网 > 高中数学 > 题目详情

【题目】某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为)作为样本(样本容量)进行统计,按照的分组作出频率分布直方图,已知得分在的频数分别为.

1)求样本容量和频率分布直方图中的的值;

2)估计本次竞赛学生成绩的众数、中位数、平均数.

【答案】1;(2)众数为,中位数为,平均数为.

【解析】

1)由题意先根据得分在的频数求出样本容量,根据得分在的频数可计算出的值,再根据直方图中所有矩形面积之和为可求出的值;

2)根据最高矩形底边中点值求出众数,将矩形底边的中点值乘以相应矩形的面积,再将所得结果相加可得平均数,设中位数为,根据中位数左边的矩形面积之和为列方程可求出的值,即为所求的中位数.

1)由题意可知,样本容量为

2)由频率分布直方图可知,本次竞赛学生成绩的众数为

设中位数为,则

由题意可得,解得

即本次竞赛学生成绩的中位数为.

由频率分布直方图可知,本次竞赛学生成绩的平均数为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的所有棱长都是2,平面ABC,D,E分别是AC,的中点.

(1)求证:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的最大值和最小值;

2)求实数的取值范围,使在区间上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,点是圆上一动点, 的垂直平分线与交于点.

1)求点的轨迹方程;

2)设点的轨迹为曲线,过点且斜率不为0的直线交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场亲子游乐场由于经营管理不善突然倒闭.在进行资产清算时发现有3000名客户办理的充值会员卡上还有余额.为了了解客户充值卡上的余额情况,从中抽取了300名客户的充值卡余额进行统计.其中余额分组区间为,其频率分布直方图如图所示,请你解答下列问题:

(1)求的值;

(2)求余额不低于元的客户大约为多少人?

(3)根据频率分布直方图,估计客户人均损失多少?(用组中值代替各组数据的平均值).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆B为椭圆上任一点,F为椭圆左焦点,已知的最小值与最大值之和为4,且离心率,抛物线的通径为4

求椭圆和抛物线的方程;

设坐标原点为OA为直线与已知抛物线在第一象限内的交点,且有

试用k表示AB两点坐标;

是否存在过AB两点的直线l,使得线段AB的中点在y轴上?若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M点为圆心的圆及其上一点.

1)设圆Ny轴相切,与圆M外切,且圆心在直线上,求圆N的标准方程;

2)设平行于OA的直线l与圆M相交于BC两点且,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列的各项均为正数,其前项和为 .

(1)如果,且对于一切正整数,均有,求

(2)如果对于一切正整数,均有,求

(3)如果对于一切正整数,均有,证明: 能被8整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.

该公司将近天,每天揽件数量统计如下:

包裹件数范围

包裹件数

(近似处理)

天数

(1)某人打算将 三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过元的概率;

(2)该公司从收取的每件快递的费用中抽取元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过件,工资元,目前前台有工作人员人,那么,公司将前台工作人员裁员人对提高公司利润是否更有利?

查看答案和解析>>

同步练习册答案