精英家教网 > 高中数学 > 题目详情
已知P={0,1},Q={-1,0,1},f是从P到Q的映射,则满足f(0)>f(1)的映射有(   )个
A.2B.3C.4D.5
B

试题分析:从P到Q的映射的映射共有9个,其中当f(0)=1,f(1)=0、f(0)=1,f(1)=-1和 f(0)=0,f(1)=-1时的映射满足条件,故答案为B。
点评:若集合A中有n个元素,集合B中有m个元素,则从A到B的映射共有个。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设某物体一天中的温度是时间的函数:,其中温度的单位是,时间单位是小时,表示12:00,取正值表示12:00以后.若测得该物体在8:00的温度是,12:00的温度为,13:00的温度为,且已知该物体的温度在8:00和16:00有相同的变化率.
(1)写出该物体的温度关于时间的函数关系式;
(2)该物体在10:00到14:00这段时间中(包括10:00和14:00),何时温度最高,并求出最高温度;
(3)如果规定一个函数在区间上的平均值为,求该物体在8:00到16:00这段时间内的平均温度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是集合的映射,其中,且,则中元素的象和中元素的原象分别为(    )
A., 0 或2B. 0 , 2C. 0 , 0或2D. 0 , 0或

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

具有相同定义域D的函数和,,若对任意的,都有,则称在D上是“密切函数”.给出定义域均为的四组函数:、




其中,函数在D上为“密切函数”的是_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数f (x)=,其中a∈R.
(1)若a=1,f (x)的定义域为[0,3],求f (x)的最大值和最小值.
(2)若函数f (x)的定义域为区间(0,+∞),求a的取值范围使f (x)在定义域内是单调减函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若方程的两实根均在区间(,1)内,求的取值范围            

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义域为的函数同时满足:
①对于任意的,总有;         ②
③若,则有成立。
的值;
的最大值;
若对于任意,总有恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将函数上的所有极值点按从小到大排成一列,给出以下不等式: ①; ②;③;④;其中,正确的判断是(     )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知 
(1)求的最小值;  
(2)求的值域。

查看答案和解析>>

同步练习册答案