精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:


2

3

4

5

6


2.2

3.8

5.5

6.5

7.0

若由资料知,yx呈线性相关关系,试求:

1)回归直线方程;

2)估计使用年限为10年时,维修费用约是多少?

【答案】(1) (2)1238万元

【解析】

(1)根据题表中数据作散点图,如图所示:

从散点图可以看出,样本点都集中分布在一条直线附近,因此yx之间具有线性相关关系.利用题中数据得:

(23456)4

(2.23.85.56.57.0)5

2×2.23×3.84×5.55×6.56×7.0112.3

223242526290

所以

线性回归方程为.

(2)x10时,1.23×100.0812.38(万元),即当使用10年时,估计维修费用是12.38万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若关于x的方程|x4x3|=axR上存在4个不同的实根则实数a的取值范围为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)若上单调递增,求正数的最大值;

2)若函数内恰有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用分别表示乌龟和兔子所行的路程,为时间,则与故事情节相吻合的是(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】探究函数x∈(0+∞)取最小值时x的值,列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.02

4.04

4.3

5

5.8

7.57

请观察表中y值随x值变化的特点,完成以下的问题:

(1)函数(x>0)在区间(02)上递减;函数在区间________上递增.x=_________时,_______.

(2)证明:函数(x>0)在区间(O2)上递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象过点,对任意满足,且有最小值为

1)求的解析式;

2)求函数在区间[0,1]上的最小值,其中

3)在区间[1,3]上,的图象恒在函数的图象上方,试确定实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点,,坐标分别为为线段上一点,直线轴负半轴交于点,直线交于点

(1)当点坐标为时,求直线的方程;

(2)求面积之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 部分图象如图所示.
(Ⅰ)求φ值及图中x0的值;
(Ⅱ)在△ABC中,A,B,C的对边分别为a,b,c,已知 ,f(C)=﹣2,sinB=2sinA,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,APB的面积为y,yx之间的函数关系式用如图所示的程序框图给出.

(1)写出程序框图中①,,③处应填充的式子.

(2)若输出的面积y值为6,则路程x的值为多少?

查看答案和解析>>

同步练习册答案