精英家教网 > 高中数学 > 题目详情

【题目】如图,在高为的等腰梯形中,,且,将它沿对称轴折起,使平面平面,如图,点的中点,点在线段(不同于两点),连接并延长至点,使.

(1)证明:平面

(2),求二面角的余弦值.

【答案】(1)证明见解析;(2).

【解析】

1)建立空间直角坐标系,把证明平面的问题转化为证明即可;(2)求出平面的法向量为和平面的一个法向量为,把求二面角的余弦值的问题转化为求的夹角的余弦值的问题即可.

(1)证明:由题设知两两垂直,所以为坐标原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系,设的长为

).

因为点的中点,所以

所以.

因为

所以,又不共线,

所以平面.

(2)解 因为,所以

,所以.

设平面的法向量为

,则.

易得平面的一个法向量为.

设二面角的大小为,由图可知,为锐角,

即二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某避暑山庄拟对一个半径为1百米的圆形地块(如图)进行改造,拟在该地块上修建一个等腰梯形,其中,圆心在梯形内部,设.当该游泳池的面积与周长之比最大时为“最佳游泳池”.

(1)求梯形游泳池的面积关于的函数关系式,并指明定义域;

(2)求当该游泳池为“最佳游泳池”时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,判断函数的单调性;

(Ⅱ)当时,证明:.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆: 的长轴长为4,左、右顶点分别为,经过点的直线与椭圆相交于不同的两点(不与点重合).

(Ⅰ)当,且直线 轴时, 求四边形的面积;

(Ⅱ)设,直线与直线相交于点,求证:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为左焦点,为上顶点,为右顶点,若,抛物线的顶点在坐标原点,焦点为.

(1)求的标准方程;

(2)是否存在过点的直线,与交点分别是,使得?如果存在,求出直线的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,为线段的中点,为线段上的一点.

(1)证明:平面平面.

(2)若,二面角的余弦值为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线L: y=x+m与抛物线y2=8x交于A、B两点(异于原点)

(1)若直线L过抛物线焦点,求线段 |AB|的长度;

(2)若OA⊥OB ,求m的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论

ACBD

ACD是等边三角形;

AB与平面BCD成60°的角;

AB与CD所成的角是60°.

其中正确结论的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家具厂有方木料90,五合板600,准备加工成书桌和书橱出售.已知生产第张书桌需要方木料O.l,五合板2,生产每个书橱而要方木料0.2,五合板1,出售一张方桌可获利润80元,出售一个书橱可获利润120元.

(1)如果只安排生产书桌,可获利润多少?

(2)怎样安排生产可使所得利润最大?

查看答案和解析>>

同步练习册答案