精英家教网 > 高中数学 > 题目详情
(5分)(2011•福建)已知函数f(x)=.若f(a)+f(1)=0,则实数a的值等于(        )
A.﹣3B.﹣1C.1D.3
A

试题分析:由分段函数f(x)=,我们易求出f(1)的值,进而将式子f(a)+f(1)=0转化为一个关于a的方程,结合指数的函数的值域,及分段函数的解析式,解方程即可得到实数a的值.
解:∵f(x)=
∴f(1)=2
若f(a)+f(1)=0
∴f(a)=﹣2
∵2x>0
∴x+1=﹣2
解得x=﹣3
故选A
点评:本题考查的知识点是分段函数的函数值,及指数函数的综合应用,其中根据分段函数及指数函数的性质,构造关于a的方程是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设f(x)=
x2|x|≥1
x|x<1
,若f(g(x))值域为[0,+∞),则g(x)的值域可能为(  )
A.(-∞,-1)∪[1,+∞)B.(-∞,-1]∪(0,+∞)C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若命题“恒成立”是真命题,则实数a的取值范围是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的最小值为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=,其中a∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x2)=f(x1)成立,则实数k的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2014·孝感模拟)已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.
(1)求函数f(x)的最小值.
(2)对于?x1,x2∈[0,2],f(x1)>g(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2+bx+c图象的顶点为(-1,10),且方程ax2+bx+c=0的两根的平方和为12,求二次函数f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=-对任意实数成立,若当恒成立,则的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为坐标原点,给定一个定点,而点正半轴上移动,表示的长,则中两边长的比值的最大值为     

查看答案和解析>>

同步练习册答案