精英家教网 > 高中数学 > 题目详情
4.已知平面直角坐标系xOy中的两条直线l1:x+2y=0,l2:x-y+3=0的交点为A,直线l过点A且与直线OA垂直,求直线l的方程.

分析 先联立方程组,求出交点坐标,再根据直线l过点A且与直线OA垂直,求出直线的斜率,根据点斜式方程即可求出.

解答 解:联立方程组得$\left\{\begin{array}{l}{x+2y=0}\\{x-y+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-2}\\{y=1}\end{array}\right.$,即A(-2,1),
∵直线l过点A且与直线OA垂直,
∴klkOA=-1,
∴kl=2,
∴直线l的方程为y-1=2(x+2),即2x-y+5=0.

点评 本题考查直线的一般式方程,涉及直线的垂直关系和直线的点斜式方程,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.函数f(x)=x+$\frac{2}{x}$.
(1)判断f(x)的奇偶性,并证明你的结论.
(2)用函数单调性的定义证明函数f(x)在[$\sqrt{2}$,+∞)内是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.用导数证明:$\frac{si{n}^{8}x}{8}$-$\frac{co{s}^{8}x}{8}$-$\frac{si{n}^{6}x}{3}$+$\frac{co{s}^{6}x}{6}$+$\frac{si{n}^{4}x}{4}$=$\frac{1}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.奇函数f(x)满足对任意x∈R都有f(2+x)+f(2-x)=0;且f(1)=-9,求f(2012)+f(2013)+f(2014)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,已知三边a=5,b=12,c=13,判断三角形是锐角三角形、直角三角形还是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设复数z1,z2满足z1z2+2iz1-2iz2+1=0,若z1,z2满足$\overline{{z}_{2}}$-z1=2i,求z1,z2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.△ABC中的三个内角分别为A,B,C,己知BC=4,AC=5,C=2A,则AB=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.利用正弦曲线,写出满足sinx<0,x∈[0,2π]的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某汽车运输公司,购买了一批豪华大客车投入运营,据市场分析每一辆客车营运的总利润y(单位:万元)与营运年数x的函数关系是y=-3(x-6)2+33(x∈N*).
(Ⅰ)当营运年数x在什么范围内时,每辆客车营运的总利润不少于21万元?
(Ⅱ)当每辆客车营运多少年时,其营运的年平均利润最大?
(注:年平均利润=$\frac{营运总利润}{营运年数}$)

查看答案和解析>>

同步练习册答案