ÉèP£¨a£¬b£©£¨a•b¡Ù0£©¡¢R£¨a£¬2£©Îª×ø±êƽÃæxoyÉϵĵ㣬ֱÏßOR£¨OΪ×ø±êÔ­µã£©ÓëÅ×ÎïÏßy2=
4ab
x
½»ÓÚµãQ£¨ÒìÓÚO£©£®
£¨1£©Èô¶ÔÈÎÒâab¡Ù0£¬µãQÔÚÅ×ÎïÏßy=mx2+1£¨m¡Ù0£©ÉÏ£¬ÊÔÎʵ±mΪºÎֵʱ£¬µãPÔÚijһԲÉÏ£¬²¢Çó³ö¸ÃÔ²·½³ÌM£»
£¨2£©ÈôµãP£¨a£¬b£©£¨ab¡Ù0£©ÔÚÍÖÔ²x2+4y2=1ÉÏ£¬ÊÔÎÊ£ºµãQÄÜ·ñÔÚijһ˫ÇúÏßÉÏ£¬ÈôÄÜ£¬Çó³ö¸ÃË«ÇúÏß·½³Ì£¬Èô²»ÄÜ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©¶Ô£¨1£©ÖеãPËùÔÚÔ²·½³ÌM£¬ÉèA¡¢BÊÇÔ²MÉÏÁ½µã£¬ÇÒÂú×ã|OA|•|OB|=1£¬ÊÔÎÊ£ºÊÇ·ñ´æÔÚÒ»¸ö¶¨Ô²S£¬Ê¹Ö±ÏßABºãÓëÔ²SÏàÇУ®
·ÖÎö£º£¨1£©°ÑÖ±Ïß·½³ÌÓëÅ×ÎïÏß·½³ÌÁªÁ¢ÇóµÃ½»µãQµÄ×ø±ê£¬´úÈëy=mx2+1£¬ÇóµÃaºÍbµÄ¹Øϵʽ£¬½ø¶øÅжϳöµ±m=1ʱ£¬µãP£¨a£¬b£©ÔÚÔ²M£ºx2+£¨y-1£©2=1ÉÏ
£¨2£©Éèa=cos¦È£¬b=
1
2
sin¦È
£¬½ø¶ø¸ù¾ÝµãQµÄ×ø±ê£¬ÇóµÃy2Q-mx2Q=16£¬½ø¶øÅжϳö£¬µãQÔÚË«ÇúÏßy2-4x2=16ÉÏ£®
£¨3£©ÉèAB£ºx=ky+¦Ë£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬½ø¶ø¸ù¾Ý|OA|•|OB|=1£¬ÇóµÃy2•y1£¬½ø¶ø°ÑÖ±ÏßÓëÔ²·½³ÌÁªÁ¢£¬ÇóµÃy2•y1£¬½ø¶ø¸ù¾ÝÔ­µãOµ½Ö±ÏßAB¾àÀëÇóµÃd£¬½ø¶øÅжϳöÖ±ÏßABºãÓëÔ²S£ºx2+y2=
1
4
ÏàÇУ®
½â´ð£º½â£º£¨1£©¡ß
y=
2
a
x
y2=
4
ab
x
?Q(
a
b
£¬
2
b
)
£¬
´úÈëy=mx2+1¡à
2
b
=m(
a
b
)2+1
?ma2+b2-2b=0
µ±m=1ʱ£¬µãP£¨a£¬b£©ÔÚÔ²M£ºx2+£¨y-1£©2=1ÉÏ
£¨2£©¡ßP£¨a£¬b£©ÔÚÍÖÔ²x2+4y2=1ÉÏ£¬¼´a2+£¨2b£©2=1
¡à¿ÉÉèa=cos¦È£¬b=
1
2
sin¦È

ÓÖ¡ßQ(
a
b
£¬
2
b
)
£¬
¡à
xQ=
a
b
yQ=
2
b
?
y
2
Q
-m
x
2
Q
=(
2
b
)2-m(
a
b
)2=(
4
sin¦È
)2-m(
2cos¦È
sin¦È
)2
=
16
sin2¦È
-
4mcos2¦È
sin2¦È
=16
£¨Áîm=4£©
¡àµãQÔÚË«ÇúÏßy2-4x2=16ÉÏ
£¨3£©¡ßÔ²MµÄ·½³ÌΪx2+£¨y-1£©2=1
ÉèAB£ºx=ky+¦Ë£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉ|OA|•|OB|=1
x
2
1
+
y
2
1
x
2
2
+
y
2
2
=
1-(y1-1)2+
y
2
1
1-(y2-1)2+
y
2
2
=
2y1
2y2
=1
?y1y2=
1
4

ÓÖ¡ß
x2+(y-1)2=1
x=ky+¦Ë
?£¨k2+1£©y2+2£¨k¦Ë-1£©y+¦Ë2=0£¬
¡ày1y2=
¦Ë2
k2+1
=
1
4
?
|¦Ë|
k2+1
=
1
2

ÓÖÔ­µãOµ½Ö±ÏßAB¾àÀëd=
|¦Ë|
1+k2

¡àd=
1
2
£¬¼´Ô­µãOµ½Ö±ÏßABµÄ¾àÀëºãΪ
1
2

¡àÖ±ÏßABºãÓëÔ²S£ºx2+y2=
1
4
ÏàÇУ®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣮ֱÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌâÄÜÓÐЧµØ¿¼²é¿¼Éú·ÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£¬Òò´Ë±¶Êܸ߿¼ÃüÌâÈ˵ÄÇàíù£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè¿Õ¼äÏòÁ¿
a
¡¢
b
¡¢
p
£¬ÔòÏÂÁÐÃüÌâÖÐÕýÈ·ÃüÌâµÄÐòºÅ£º
 

¢ÙÈô
p
=x
a
+y
b
£¬Ôò
p
Óë
a
¡¢
b
¹²Ã棻
¢ÚÈô
p
Óë
a
¡¢
b
¹²Ã棬Ôò
p
=x
a
+y
b
£»
¢ÛÈô
MP
=x
MA
+y
MB
£¬ÔòP¡¢M¡¢A¡¢B¹²Ã棻
¢ÜÈôP¡¢M¡¢A¡¢B¹²Ã棬Ôò
MP
=x
MA
+y
MB

¢ÝÈô´æÔڦˣ¬¦Ì¡ÊRʹ¦Ë
a
+¦Ì
b
=0£¬Ôò¦Ë=¦Ì=0
¢ÞÈô
a
£¬
b
²»¹²Ïߣ¬Ôò¿Õ¼äÈÎÒ»ÏòÁ¿p=¦Ë
a
+¦Ì
b
 £¨¦Ë£¬¦Ì¡ÊR£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèO¡¢A¡¢BÊÇƽÃæÄÚ²»¹²ÏßµÄÈýµã£¬¼Ç
OA
=
a
£¬ 
OB
=
b
£¬ÈôPΪÏ߶ÎAB´¹Ö±Æ½·ÖÏßÉÏÈÎÒâÒ»µã£¬ÇÒ
OP
=
p
£¬µ±|
a
|=2£¬|
b
|=1ʱ£¬Ôò
p
•(
a
-
b)
µÈÓÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèP¡¢A¡¢B¡¢CÊÇÇòO±íÃæÉϵÄËĸöµã£¬PA¡¢PB¡¢PCÁ½Á½´¹Ö±£¬ÇÒPA=3£¬PB=4£¬PC=5£¬ÔòÇòµÄ°ë¾¶Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

Éè¿Õ¼äÏòÁ¿
a
¡¢
b
¡¢
p
£¬ÔòÏÂÁÐÃüÌâÖÐÕýÈ·ÃüÌâµÄÐòºÅ£º______
¢ÙÈô
p
=x
a
+y
b
£¬Ôò
p
Óë
a
¡¢
b
¹²Ã棻
¢ÚÈô
p
Óë
a
¡¢
b
¹²Ã棬Ôò
p
=x
a
+y
b
£»
¢ÛÈô
MP
=x
MA
+y
MB
£¬ÔòP¡¢M¡¢A¡¢B¹²Ã棻
¢ÜÈôP¡¢M¡¢A¡¢B¹²Ã棬Ôò
MP
=x
MA
+y
MB

¢ÝÈô´æÔڦˣ¬¦Ì¡ÊRʹ¦Ë
a
+¦Ì
b
=0£¬Ôò¦Ë=¦Ì=0
¢ÞÈô
a
£¬
b
²»¹²Ïߣ¬Ôò¿Õ¼äÈÎÒ»ÏòÁ¿p=¦Ë
a
+¦Ì
b
 £¨¦Ë£¬¦Ì¡ÊR£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸