精英家教网 > 高中数学 > 题目详情
8.若函数f(x)=$\frac{kx+7}{\sqrt{k{x}^{2}+4kx+3}}$的定义域为R,则实数k的取值范围为[0,$\frac{3}{4}$).

分析 由题意可得kx2+4kx+3>0恒成立,对k讨论,k=0,k>0,k<0,结合二次函数的图象和性质,由二次不等式的解法即可得到所求范围.

解答 解:由题意可得kx2+4kx+3>0恒成立,
当k=0时,即有3>0恒成立;
当k>0时,△<0即为16k2-12k<0,
解得0<k<$\frac{3}{4}$;
当k<0时,不等式不恒成立.
综上可得,k的取值范围是[0,$\frac{3}{4}$).
故答案为:[0,$\frac{3}{4}$).

点评 本题考查不等式成立问题的解法,注意运用二次不等式的解法和二次函数的性质,以及分类讨论的思想方法,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=(sinx+cosx)2+cos2x.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)求f(x)在区间[-$\frac{π}{2}$,$\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}的通项为an=$\frac{1}{\sqrt{n+1}+\sqrt{n}}$,若Sn=9,则项数n=99.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.顶点在原点,焦点在x轴的抛物线截直线y=-2x-1所得的弦长|AB|=5$\sqrt{3}$,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若二次函数f(x)满足f(1+x)=f(1-x),且其图象开口向上,则f(0),f(1),f(3)的大小关系为f(1)<f(0)<f(3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.cos21°+cos22°+cos23°+…+cos290°的值为(  )
A.90B.45C.44.5D.44

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}的通项是an=3n-2,n∈N*,设Tn=a1+a2Cn1+a3Cn2+…+anCnn-1+an+1Cnn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若有一个企业,70%的员工收人1万,25%的员工年收人3万,5%的员工年收人11万,则该企业员工的年收人的平均数是2万,中位数是1万,众数是1万.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x∈Z||x|≤2},B={x|x2-2x-8≥0},则A∩(∁RB)=(  )
A.{-2,-1,0,1,2}B.{-1,0,1,2}C.{2}D.{x|-2<x≤2}

查看答案和解析>>

同步练习册答案