分析 (1)直线l的参数方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),消去参数t化为$\sqrt{3}x-y-2\sqrt{3}$=0,把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入即可得出,由曲线C的极坐标方程为:ρ=4cosθ,变为ρ2=4ρcosθ,代入化为直角坐标方程.
(2)联立$\left\{\begin{array}{l}{\sqrt{3}x-y-2\sqrt{3}=0}\\{{x}^{2}+{y}^{2}-4x=0}\end{array}\right.$,解出再化为极坐标(ρ≥0,0≤θ<2π)为.
解答 解;(1)直线l的参数方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),消去参数t化为$\sqrt{3}x-y-2\sqrt{3}$=0,
把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入可得:$\sqrt{3}ρcosθ-ρsinθ-2\sqrt{3}$=0,
由曲线C的极坐标方程为:ρ=4cosθ,变为ρ2=4ρcosθ,化为x2+y2-4x=0.
(2)联立$\left\{\begin{array}{l}{\sqrt{3}x-y-2\sqrt{3}=0}\\{{x}^{2}+{y}^{2}-4x=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=-\sqrt{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=3}\\{y=\sqrt{3}}\end{array}\right.$,
∴直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π)为$(2,\frac{5π}{3})$,$(2\sqrt{3},\frac{π}{6})$.
点评 本题考查了极坐标与直角坐标方程的互化、直线与曲线的交点,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 命题①和命题②都成立 | B. | 命题①和命题②都不成立 | ||
C. | 命题①成立,命题②不成立 | D. | 命题①不成立,命题②成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com