精英家教网 > 高中数学 > 题目详情

【题目】,若对一切恒成立, 给出以下结论:

的单调递增区间是

④函数既不是奇函数也不是偶函数;

⑤存在经过点的直线与函数的图象不相交.其中正确结论的个数为(

A. 1B. 2C. 3D. 4

【答案】C

【解析】

根据可知,从而得到,将化简为;代入求值即可知①②正确;当时,可验证出③所给区间可能为单调递减区间,③错误;利用奇偶性定义可知④正确;根据函数图象可知无交点时需,又,可知不成立,故⑤错误.

恒成立可知:

即:,整理可得:

,可知①正确;

,可知②正确;

③当时,

时,的单调递增区间

时,的单调递减区间

可知③错误;

④由函数解析式可知:,则为非奇非偶函数,可知④正确;

⑤要使得经过的直线与函数无交点,则直线需与轴平行且

,不成立,可知⑤错误.

综上所述:①②④正确

本题正确选项:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1 , l2之间,l∥l1 , l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧 的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2 , 则函数y=f(x)的图象大致是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( )
A.(0,1)
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论

(1)某学校从编号依次为001,002,…,900的900个学生中用系统抽样的方法抽取一个样本,已知样本中有两个相邻的编号分别为053,098,则样本中最大的编号为862.

(2)甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲.

(3)若两个变量的线性相关性越强,则相关系数的值越接近于1.

(4)对ABC三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.

则正确的个数是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于函数的判断正确的是(  )

的解集是

极小值,是极大值;

没有最小值,也没有最大值.

A. ①③ B. ①②③ C. D. ①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△AnBnCn的三边长分别为an , bn , cn , △AnBnCn的面积为Sn , n=1,2,3…若b1>c1 , b1+c1=2a1 , an+1=an ,则(
A.{Sn}为递减数列
B.{Sn}为递增数列
C.{S2n1}为递增数列,{S2n}为递减数列
D.{S2n1}为递减数列,{S2n}为递增数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为 ,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

(1)的值

(2)求函数的单调区间

(3)设函数,且在区间内为单调递增函数求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的图象过点

(1)求的值并求函数的值域;

(2)若关于的方程有实根,求实数的取值范围;

(3)若函数 ,则是否存在实数,使得函数的最大值为0?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案