A. | f(ln2015)<2015f(0) | |
B. | f(ln2015)=2015f(0) | |
C. | f(ln2015)>2015f(0) | |
D. | f(ln2015)与2015f(0)的大小关系不确定 |
分析 构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,利用导数可判断g(x)的单调性,由单调性可得g(ln2015)与g(0)的大小关系,整理即可得到答案.
解答 解:令g(x)=$\frac{f(x)}{{e}^{x}}$,则g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
因为对任意x∈R都有f′(x)>f(x),
所以g′(x)>0,即g(x)在R上单调递增,
又ln2015>0,所以g(ln2015)>g(0),即$\frac{f(ln2015)}{{e}^{ln2015}}$>$\frac{f(0)}{{e}^{0}}$,
所以 f(ln2015)>2015f(0),
故选:C.
点评 本题考查导数的运算及利用导数研究函数的单调性,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2014}$ | B. | $\frac{1}{2015}$ | C. | $\frac{2013}{2014}$ | D. | $\frac{2014}{2015}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x=-$\frac{π}{4}$ | B. | x=$\frac{π}{4}$ | C. | x=$\frac{π}{8}$ | D. | x=-$\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0.9 | B. | 0.2 | C. | 0.7 | D. | 0.5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com