精英家教网 > 高中数学 > 题目详情
1.设$0≤x≤\frac{π}{4}$,则$\sqrt{1-2sinxcosx}$=(  )
A.cosx-sinxB.sinx-cosxC.cosx+sinxD.-cosx-sinx

分析 由条件求得 cosx>sinx,再利用同角三角函数的基本关系化简所给的式子,可得结果.

解答 解:设$0≤x≤\frac{π}{4}$,则 cosx>sinx,则$\sqrt{1-2sinxcosx}$=|cosx-sinx|=cosx-sinx,
故选:A.

点评 本题主要考查同角三角函数的基本关系,判断cosx>sinx 是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.矩形的长为12.宽为8,与它周长相等的正方形的面积是(  )
A.96B.48C.40D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知下列命题:
①有向线段就是向量,向量就是有向线段;
②如果向量$\vec a$与向量$\vec b$平行,则$\vec a$与$\vec b$的方向相同或相反;
③如果向量$\overrightarrow{AB}$与向量$\overrightarrow{CD}$共线,则A,B,C,D四点共线;
④如果$\overrightarrow a$∥$\vec b$,$\vec b$∥$\overrightarrow c$,那么$\overrightarrow a$∥$\overrightarrow c$;
⑤两个向量不能比较大小,但是他们的模能比较大小.
其中正确的命题为(  )
A.①②④⑤B.②④⑤C.D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.计算:($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$+lg$\frac{3}{7}$+lg70+$\sqrt{(lg3)^{2}-lg9+1}$=$\frac{43}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,角A,B,C的对边分别为a,b,c,且其面积$S=\frac{{{a^2}+{b^2}-{c^2}}}{{4\sqrt{3}}}$,则角C=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}满足:a1=1,${2^{n-1}}{a_n}={a_{n-1}}(n∈{N^*},n≥2)$,则数列{an}的通项公式为an=${(\frac{1}{2})^{\frac{n(n-1)}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,O为直线A0A2015外一点,若A0,A1,A2,A3,A4,A5,…,A2015中任意相邻两点的距离相等,设$\overrightarrow{O{A}_{0}}$=$\overrightarrow{a}$,$\overrightarrow{O{A}_{2015}}$=$\overrightarrow{b}$,用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{O{A}_{0}}$+$\overrightarrow{O{A}_{1}}$+…+$\overrightarrow{O{A}_{2015}}$,其结果为1008($\overrightarrow{a}$+$\overrightarrow{b}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设甲乙两地相距100海里,船从甲地匀速驶到乙地,已知某船的最大船速是36海里/时:当船速不大于每小时30海里/时,船每小时使用的燃料费用和船速成正比;当船速不小于每小时30海里/时,船每小时使用的燃料费用和船速的平方成正比;当船速为30海里/时,它每小时使用的燃料费用为300元;其余费用(不论船速为多少)都是每小时480元;
(1)试把每小时使用的燃料费用P(元)表示成船速v(海里/时)的函数;
(2)试把船从甲地行驶到乙地所需要的总费用Y表示成船速v的函数;
(3)当船速为每小时多少海里时,船从甲地到乙地所需要的总费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知sin($\frac{π}{6}$-α)-cosα=$\frac{1}{3}$,则cos(2α+$\frac{π}{3}$)=(  )
A.$\frac{5}{18}$B.-$\frac{5}{18}$C.$\frac{7}{9}$D.-$\frac{7}{9}$

查看答案和解析>>

同步练习册答案