精英家教网 > 高中数学 > 题目详情

在数列中,已知.
(1)求数列的通项公式;
(2)设,求数列的前n项和.

(1);(2)

解析试题分析:(1)由可知数列为等比数列,根据等比数列的通项公式求,将代入可得。(2)数列的通项公式为等差乘以等比数列所以应用错位相减法求数列的前项和。将表示为各项的和,然后将上式两边同时乘以通项公式里边等比数列的公比,但应将第一位空出,然后两式相减即可。
试题解析:解:(1)∵
∴数列{}是首项为,公比为的等比数列,
  .                            4分

   .                      6分
(2)由(1)知,(n
.
,          ①
于是      ②
8分
① ②得     
=.                           12分  
.                     14分.
考点:1等比数列的定义及通项公式;2错位相减法求数列的和。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(13分)(2011•重庆)设{an}是公比为正数的等比数列a1=2,a3=a2+4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列满足
(1)求数列的通项;
(2)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和满足.
(1)求数列的通项公式;(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}的首项不为零,前n项和为Sn,且对任意的rtN*,都有
(1)求数列{an}的通项公式(用a1表示);
(2)设a1=1,b1=3,,求证:数列为等比数列;
(3)在(2)的条件下,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}是等差数列,数列{bn}是等比数列,且对任意的,都有.
(1)若{bn }的首项为4,公比为2,求数列{an+bn}的前n项和Sn;
(2)若 ,试探究:数列{bn}中是否存在某一项,它可以表示为该数列中其它项的和?若存在,请求出该项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,3Sn=an-1(n∈N?).
(1)求a1,a2
(2)求证:数列{an}是等比数列;
(3)求an和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求使恒成立的实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等比数列{an}的前n项和为Sn,已知a1+an=66,a2an-1=128,Sn=126,求n和公比q的值.

查看答案和解析>>

同步练习册答案