精英家教网 > 高中数学 > 题目详情
11.(Ⅰ)设U=R,A={x|-2≤x<4},B={x|8-2x≥3x-7},求(∁UA)∩(∁UB).
(Ⅱ)已知集合A={x|3x-4≤0},B={x|x-m<0},且A∩B=B,求m的取值范围.

分析 (Ⅰ)求解一次不等式化简集合B,然后分别求出∁UA和∁UB,取交集得答案;
(Ⅱ)分别求解一元一次不等式化简两集合,由A∩B=B得B⊆A,再结合两集合端点值间的关系得答案.

解答 解:(Ⅰ)B={x|8-2x≥3x-7}={x|x≤3},
则∁UB={x|x>3}.
∵A={x|-2≤x<4},∴∁UA={x|x<-2或x≥4}.
∴(∁UA)∩(∁UB)={x|x≥4};
(Ⅱ)$A=\left\{{x|x≤\frac{4}{3}}\right\},B=\left\{{x|x<m}\right\}$,
∵A∩B=B,∴B⊆A,
∴$m≤\frac{4}{3}$.

点评 本题考查交、并、补集的混合运算,考查了集合间的关系的判断与运用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.抛物线y2=2px(p>0)上一点A(4,m),若点A到准线的距离为6,则m=$±4\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列四个命题:
(1)函数f(x)=2x+1(x∈N)的图象是一条直线;
(2)函数$f(x)=\frac{1}{x}$在(-∞,0)时是减函数,在(0,+∞)也是减函数,所以f(x)在定义域上是减函数;
(3)f(x)=x2-2|x|-3的递增区间为[-1,0]和[1,+∞);
(4)若函数f(x)=ax2+bx+2与x轴没有交点,则b2-8a<0且a>0.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在各项为正数的等比数列{an}中,a1=3,前三项的和S3=21,则a3+a4+a5的值为(  )
A.33B.72C.84D.189

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知定义域为R的二次函数的最小值为0,且有f(1+x)=f(1-x),直线g(x)=4(x-1)的图象与f(x)的图象交于两点,两点间的距离为$4\sqrt{17}$,数列{an}满足a1=2,$({a_{n+1}}-{a_n})\;•\;g({a_n})+f({a_n})=0\;(n∈{N^*})$.
(1)求函数f(x)的解析式;
(2)求证数列{an-1}是等比数列;
(3)设bn=3f(an)-g(an+1),求数列{bn}的最小值及相应的n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.“0<a<b”是“($\frac{1}{4}$)a>($\frac{1}{4}$)b”的充分不必要条件.(填充分而不必要条件、必要而不充分件、充分条件、既不充分也不必要条件中一个)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=4x-a•2x+1-6,x∈[0,1],
(1)若函数有零点,求a的取值范围;
(2)若不等式f(x)+3a+6≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,已知圆C的圆心为极坐标:C($\sqrt{2}$,$\frac{π}{4}$),半径r=$\sqrt{3}$.
(1)求圆C的极坐标方程;
(2)若过点P(0,1)且倾斜角α=$\frac{π}{6}$的直线l交圆C于A,B两点,求|PA|2+|PB|2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)=$\frac{x}{x+1}$,f1(x)=f(x),fn(x)=fn-1[f(x)](n≥2,n∈N*),则f(1)+f(2)+…f(2011)+f1(1)+f2(1)+f3(1)…f2011(1)=(  )
A.2009B.2010C.2011D.1

查看答案和解析>>

同步练习册答案