精英家教网 > 高中数学 > 题目详情

【题目】某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元.该公司第年需要付出设备的维修和工人工资等费用的信息如下图 .

(1

(2引进这种设备后,第几年后该公司开始获利;

(3这种设备使用多少年,该公司的年平均获利最大?

【答案】(1);(2);(3.

【解析】

试题分析:(1)由图可知,每年费用是以为首项,为公差的等差数列,所以2设纯收入与年数的关系为,则:,由解得点的最小值为3年平均收入为,当且仅当时等号成立.

试题解析:

1)由题意知,每年费用是以2为首项,2为公差的等差数列,求得:

2)设纯收入与年数的关系为,则:

,解得

又因为,所以,即从第2年该公司开始获利

3)年平均收入为

当且仅当时,年平均收益最大,

所以这种设备使用5年,该公司的年平均获利最大

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.

()写出y与x之间的函数关系式;

()从第几年开始,该机床开始盈利(盈利额为正值);

()使用若干年后,对机床的处理方案有两种:

(1)当年平均盈利额达到最大值时,以30万元价格处理该机床;

(2)当盈利额达到最大值时,以12万元价格处理该机床.

请你研究一下哪种方案处理较为合理?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=ax2-2x+1.

1,试讨论函数fx的单调性;

2≤a≤1,且fx在[1,3]上的最大值为Ma,最小值为Na,令ga=Ma-Na,求ga的表达式;

32的条件下,求ga的最.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差单位:mm,将所得数据分组,得到如下频率分布表:

1将上面表格中缺少的数据填在相应位置上;

2估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间1,3]内的概率;

3现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.

(1)求椭圆的方程;

(2)是椭圆的左顶点,经过左焦点的直线与椭圆交于两点,求的面积之差的绝对值的最大值.为坐标原点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.圆锥的底面是圆面,侧面是曲面

B.用一张扇形的纸片可以卷成一个圆锥

C.一个物体上、下两个面是相等的圆面,那么它一定是一个圆柱

D.圆台的任意两条母线的延长线可能相交也可能不相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了了解全校学生的上网情况,在全校采用随机抽样的方法抽取了40名学生其中男女生人数恰好各占一半进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数分为5组:,得到如图所示的频率分布直方图:

(1)写出的值;

(2)求抽取的40名学生中月上网次数不少于15次的学生人数;

在抽取的40名学生中,从月上网次数不少于20次的学生中随机抽取2人 ,求至少抽到1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在三角形中,为其中位线,且,若沿将三角形折起,使,构成四棱锥,且

1求证:平面 平面

2 异面直线所成的角为时,求折起的角度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】脱贫是政府关注民生的重要任务,了解居民的实际收入状况就显得尤为重要.现从某地区随机抽取个农户,考察每个农户的年收入与年积蓄的情况进行分析,设第个农户的年收入(万元),年积蓄(万元),经过数据处理得

(Ⅰ)已知家庭的年结余对年收入具有线性相关关系,求线性回归方程;

(Ⅱ)若该地区的农户年积蓄在万以上,即称该农户已达小康生活,请预测农户达到小康生活的最低年收入应为多少万元?

附:在 中, 其中为样本平均值.

查看答案和解析>>

同步练习册答案