精英家教网 > 高中数学 > 题目详情

【题目】在直三棱柱中,,点分别为棱的中点.

1)求证:平面

2)求直线与平面所成角的正弦值.

【答案】1)见解析下(2

【解析】

1)取的中点,连接,证明,进而证得得解;(2)在平面内作于点,以为原点,分别为轴,建立如图所示的空间直角坐标系.求得平面的法向量,利用线面角的向量公式求解

1)取的中点,连接

则在中,

又点的中点,

所以

而且

所以

所以四边形是平行四边形,

所以

平面平面

所以平面

2)在平面内作于点

为原点,分别为轴,建立如图所示的空间直角坐标系

,则

所以

设平面的一个法向量为

,得

设直线与平面所成角为

即直线与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四边形是梯形,如图的中点,以为折痕把折起,使点到达点的位置(如图2),且

1)求证:平面平面

2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)=ex+sinx+axaR.

(Ⅰ)当a=﹣2时,求证:fx)在(﹣∞,0)上单调递减;

(Ⅱ)若对任意x0fx)≥1恒成立,求实数a的取值范围;

(Ⅲ)若fx)有最小值,请直接给出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南北朝时期的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.如图,夹在两个平行平面之间的两个几何体的体积分别为,被平行于这两个平面的任意平面截得的两个截面面积分别为,则命题:“相等”是命题总相等”的(

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在《周髀算经》中,把圆及其内接正方形称为圆方图,把正方形及其内切圆称为方圆图.圆方图和方圆图在我国古代的设计和建筑领域有着广泛的应用.山西应县木塔是我国现存最古老、最高大的纯木结构楼阁式建筑,它的正面图如图所示.以该木塔底层的边作方形,会发现塔的高度正好跟此对角线长度相等.以塔底座的边作方形.作方圆图,会发现方圆的切点正好位于塔身和塔顶的分界.经测量发现,木塔底层的边不少于米,塔顶到点的距离不超过米,则该木塔的高度可能是(参考数据:)(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量(单位:克)分别在[100150)[150200)[200250)[250300)[300350)[350400]中,经统计得频率分布直方图如图所示.

1)现按分层抽样的方法从质量为[250300)[300350)内的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在[300350)内的概率;

2)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10 000个,经销商提出如下两种收购方案:A方案:所有芒果以10/千克收购;B方案:对质量低于250克的芒果以2/个收购,高于或等于250克的以3/个收购.通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若处的切线方程为,求实数的值:

2)求证:当时,上有两个极值点:

3)设,若单调递减,求实数的取值范围.(其中为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆Cab0)的焦距为2,且过点.

1)求椭圆C的方程;

2)已知△BMN是椭圆C的内接三角形,若坐标原点O为△BMN的重心,求点O到直线MN距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】千百年来,人们一直在通过不同的方式传递信息.在古代,烽火狼烟、飞鸽传书、快马驿站等通信方式被人们广泛传知;第二次工业革命后,科技的进步带动了电讯事业的发展,电报电话的发明让通信领域发生了翻天覆地的变化;之后,计算机和互联网的出现则.使得千里眼”“顺风耳变为现实……此时此刻,5G的到来即将给人们的生活带来颠覆性的变革,“5G领先一方面是源于我国项层设计的宏观布局,另一方面则来自于政府高度重视、企业积极抢滩、企业层面的科技创新能力和先发优势.某科技创新公司基于领先技术的支持,丰富的移动互联网应用等明显优势,随着技术的不断完善,该公司的5G经济收入在短期内逐月攀升,业内预测,该创新公司在第1个月至第7个月的5G经济收入y(单位:百万元)关于月份x的数据如下表:

时间(月份)

1

2

3

4

5

6

7

收入(百万元)

6

11

21

34

66

101

196

根据以上数据绘制散点图:

1)为了更充分运用大数据、人工智能、5G等技术,公司需要派出员工实地考察检测产品性能和使用状况,公司领导要从报名的五名科技人员ABCDE中随机抽取3个人前往,则AB同时被抽到的概率为多少?

2)根据散点图判断,abcd均为大于零的常数)哪一个适宜作为5G经济收入y关于月份x的回归方程类型?(给出判断即可,不必说明理由)并根据你判断结果及表中的数据,求出y关于x的回归方程;

3)请你预测该公司8月份的5G经济收入.

参考数据:

462

10.78

2711

50.12

2.82

3.47

其中设

参考公式:

对于一组具有线性相关系的数据23n),其回归直线的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

同步练习册答案