精英家教网 > 高中数学 > 题目详情
设f(x)定义在R+上,对于任意a、b∈R+,有f(ab)=f(a)+f(b)求证:
(1)f(1)=0;
(2)f(
1x
)=-f(x);
(3)若x∈(1,+∞)时,f(x)<0,则f(x)在(1,+∞)上是减函数.
分析:(1)由题意令a=b=1代入f(ab)=f(a)+f(b),解得(1)=0;
(2)由题意令a=x∈R+,b=
1
x
代入f(ab)=f(a)+f(b),再利用(1)的结论,即证出等式成立;
(3)利用定义法证明函数单调性,即取值-作差-变形-判断符号-下结论,再利用(2)的结论和题意进行变形以及判断符号.
解答:证明:(1)由题意知,任意a、b∈R+,有f(ab)=f(a)+f(b),
令a=b=1代入上式得,f(1)=f(1)+f(1),
∴f(1)=2f(1),∴f(1)=0.

(2)令a=x∈R+,b=
1
x
代入f(ab)=f(a)+f(b),
得f(1)=f(x)+f(
1
x
),
∵f(1)=0,∴f(x)=-f(
1
x
).

(3)设x1>x2>1,由(2)得f(x2)=-f(
1
x2
),
∴f(x1)-f(x2)=f(x1)+f(
1
x2
)=f(
x1
x2
),
∵x1>x2>1,∴
x1
x2
>1,
又∵x∈(1,+∞)时,f(x)<0,∴f(
x1
x2
)<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在(1,+∞)上是减函数.
点评:本题考查了抽象函数的单调性,反复利用恒等式f(ab)=f(a)+f(b),即根据需要给a和b适当的值,并且前两问是第三问的基础,这需要特别注意的地方,考查逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)定义在R上的偶函数,且f(x+3)=-
1f(x)
,又当x∈(0,3]时,f(x)=2x,则f(2007)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

14、设f(x)定义在R上的奇函数,且f(x+3)=-f(x),则f(2010)=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)定义在R且x不为零的偶函数,在区间(-∞,0)上递增,f(xy)=f(x)+f(y),当a满足f(2a+1)>f(-a+1)-f(3a)-3f(1)则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(30)(解析版) 题型:解答题

设f(x)定义在R上的偶函数,且,又当x∈(0,3]时,f(x)=2x,则f(2007)=   

查看答案和解析>>

同步练习册答案