精英家教网 > 高中数学 > 题目详情

【题目】已知函数处取得极小值.

1)求实数的值;

2)设,其导函数为,若的图象交轴于两点,设线段的中点为,试问是否为的根?说明理由.

【答案】12不是的根

【解析】试题分析:(1)对函数求导由函数处取得极小值可得从而可得然后将代入到导函数验证函数 处取得极小值即可;(2)由(1)知函数,根据的图象交轴于两点,可推出,令,可得,再令,构造,根据导数确定函数的单调性,可推出,即可得出结论.

试题解析:(1)

由已知得.

上单调递减,在上单调递增

处取得极小值,符合题意,故.

2)由(1)知函数.

∵函数图象与轴交于 两个不同点

两式相减整理得: .

,即.

.

上是增函数

无解,即.

不是的根

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,点中点,连接交于点,点中点.

1)求证:平面

2)求证:平面平面

3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,正项数列的前项的积为,且,当时, 都成立.

1)若 ,求数列的前项和;

2)若 ,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数.

(1)讨论函数的单调性;

(2)若函数有两个极值点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新零售模式的背景下,某大型零售公司为推广线下分店,计划在S市的A区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和.

x(个)

2

3

4

5

6

y(百万元)

2.5

3

4

4.5

6

(1)该公司经过初步判断,可用线性回归模型拟合yx的关系,求y关于x的线性回归方程;

2)假设该公司在A区获得的总年利润z(单位:百万元)与xy之间满足的关系式为:,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店,才能使A区平均每个分店的年利润最大?

附:回归方程中的斜率和截距的最小二乘估计公式分别为:

.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点

(1)求的取值范围;

(2)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量共线?如果存在,求值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地级市共有200000中小学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元。经济学家调查发现,当地人均可支配年收入较上一年每增加n%,一般困难的学生中有3n%会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生中有2n%转为一般困难,特别困难的学生中有n%转为很困难。现统计了该地级市2013年到2017年共5年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份取13时代表2013年, (万元)近似满足关系式,其中为常数。(2013年至2019年该市中学生人数大致保持不变)

其中

(Ⅰ)估计该市2018年人均可支配年收入;

(Ⅱ)求该市2018年的“专项教育基金”的财政预算大约为多少?

附:对于一组具有线性相关关系的数据,其回归直线方程

的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左,右焦点分别为 ,离心率为 是椭圆上的动点,当时, 的面积为.

(1)求椭圆的标准方程;

(2)若过点的直线交椭圆 两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.

(1)求图中的值;

(2)估计该校担任班主任的教师月平均通话时长的中位数;

(3)在这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.

查看答案和解析>>

同步练习册答案